搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于节点拓扑特征的中国基金公司共持网络持股行为波动相关性

李华姣 安海忠 黄家宸 高湘昀 石艳丽

引用本文:
Citation:

基于节点拓扑特征的中国基金公司共持网络持股行为波动相关性

李华姣, 安海忠, 黄家宸, 高湘昀, 石艳丽

Correlation of the holding behaviour of the holding-based network of Chinese fund management companies based on the node topological characteristics

Li Hua-Jiao, An Hai-Zhong, Huang Jia-Chen, Gao Xiang-Yun, Shi Yan-Li
PDF
导出引用
  • 选取2003–2012年期间半年度中国基金公司持上市公司股票份额面板数据为样本数据,以基金公司为节点,以同一时刻共持同一家上市公司股票关系为边,以同一时刻共持的上市公司数量为权重,构建中国基金公司共持关系结构等价加权网络(简称共持网络). 结合统计物理学等方法,分析了共持网络的拓扑结构稳定性及具有不同拓扑特征值的节点随时间演变过程中与共持网络中三类节点集合持股行为波动相关性. 三类节点集合分别为t-1时刻基于某一股票形成的共持关系完全连通子图节点集合(第一类节点集合)、t-1时刻共持网络中非完全连通子图的节点集合(第二类节点集合)、t 时刻新进入共持网络的节点集合(第三类节点集合). 分析结果显示: 1)节点与第二类节点集合持股行为波动呈正相关,且相关系数随着节点集聚系数的增强而增大;2)只有当节点的度和点强度值较高时,节点与第一类和第二类节点集合的持股行为呈正相关;3)不同拓扑特征条件下的节点与第三类节点集合的持股行为均不存在波动相关性. 本文提供了一个研究持股行为相关性的新思路,并为进一步研究股票市场结构等价网络及节点重要性差异提供了基础.
    The data in this paper was collected from the semi-annual reports between 2003 and 2012 which disclosed the Chinese fund management companies' shareholdings in different listed companies. The holdings-based network of Chinese fund management companies is constructed by taking fund management companies as the nodes, the holding of stock of the same listed company at the same period as the edges, and the number of the listed companies holding at the same time as the weight of the edges. Based on the methods such as statistical physics, etc., the stability of the networks at different times is analyzed, and then the correlation of the holding behavior between the nodes with different topological characteristics and three different sets of nodes are calculated and analyzed. Three different sets are the set of nodes in the full graph with a given stock at t-1 (the first type of nodes), the set of nodes in the holing-based network without holding a given stock at t-1 (the second type of nodes), and the set of the new nodes which appear at t (the third type of nodes). The result shows as follows. Firstly, the correlation coefficient of the holding behavior between the node and the second type of nodes rises with the node clustering coefficient increasing; secondly, the node holding behavior is highly correlated with the second type of nodes and with the third type of nodes only when the values of the node average degree and strength are high; finally, the node holding behavior is not related to the third type of nodes at all. This paper propose a new method to study the correlation of stock market, and it is a basis for the further investigation on the structure equivalence network in stock market and also the differences of the importance between the nodes.
    • 基金项目: 国家自然科学基金(批准号:71173199)、教育部人文社会科学研究规划基金(批准号:10YJA630001)和中央高校基本科研业务费(批准号:2-9-2013-04)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 71173199), the Humanities and Social Sciences Planning Funds Project under the Ministry of Education, China (Grant No. 10YJA630001), and the Fundamental Research Fund for the Central Universities of China (Grant No. 2-9-2013-04).
    [1]

    Xin B G, Chen T, Liu Y Q 2011 Acta Phys. Sin. 60 048901 (in Chinese) [辛宝贵, 陈通, 刘艳芹 2011 物理学报 60 048901]

    [2]

    Zhang Y, Zhang J W, Wang Z X 2004 Physica 33 734 (in Chinese) [张宇, 张建玮, 王正行 2004 物理 33 734]

    [3]

    Huang W Q, Zhuang X T, Yao S 2009 Physica A 388 2956

    [4]

    Mantegna R N 1999 Eur. Phys. J. B 11 193

    [5]

    Battiston S, Rodrigues J F, Zeytinoglu H 2007 Adv. Complex Syst. 10 29

    [6]

    Ma Y, Zhuang X, Li L 2011 Physica A 390 749

    [7]

    Park K, Shin H 2013 Eng. Appl. Artif. Intel. 26 1550

    [8]

    Caraiani P 2013 Physica A 391 3629

    [9]

    Cohen L, Frazzini A, Malloy C 2007 J. Polit. Econ. 116 951

    [10]

    Pareek A 2012 AFA 2010 Atlanta Meetings Paper (Georgia: Atlant)

    [11]

    Hong H, Kubik J D, Stein J C 2005 J. Finance 60 2801

    [12]

    Callen J L, Fang X H 2013 J. Banking Finance 37 3047

    [13]

    An H, Zhang T 2013 J. Corp. Finance 21 1

    [14]

    Wang G J, Xie C, Chen S, Yang J J, Yang M Y 2013 Physica A 392 3715

    [15]

    Kim D H, Cha M Y, Lee J W 2011 Comput. Phys. 182 243

    [16]

    Jayasuriya S A 2011 Emerg. Markets Rev. 12 418

    [17]

    Kotkatvuori-Örnberg J, Nikkinen J, Äijö J 2013 International Rev. Financial Analysis 28 70

    [18]

    Heaney R, Sriananthakumar S 2012 J. Empir. Finance 19 583

    [19]

    Hiang Liow K 2012 Real Estate Economics 40 97

    [20]

    Cao G, Xu L, Cao J 2012 Physica A 391 4855

    [21]

    Chang C L, McAleer M, Tansuchat R 2012 North Amenican J. Econonics Finance 25 116

    [22]

    Wang G J, Xie C 2012 Acta Phys. Pol. B 43 2021

    [23]

    Jegadeesh N, Titman S 1993 J. Finance 48 65

    [24]

    Shiller R J, Pound J 1989 J. Econ. Behav. Organ. 12 47

    [25]

    Hong H, Kubik J D, Stein J C 2005 J. Finance 60 2801

    [26]

    Kacperczyk M, Seru A 2007 J. Finance 62 485

    [27]

    Wasserman S, Fraut K 1994 Social Network Analysis: Methods and Application (New York: Cambridge University Press) p356

    [28]

    Mao X M, Sun K, Ouyang Q 2002 Chin. Phys. 11 1106

    [29]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901

    [30]

    Yook S H, Jeong H, Barabási A L, Tu Y 2001 Phys. Rev. Lett. 86 5835

    [31]

    Barrat A, Barthelemy M, Pastor S R, Vespignani A 2004 Proc. Nalt. Acad. Sci. USA 101 3747

    [32]

    Gao X Y, An H Z, Liu H H, Ding Y H 2011 Acta Phys. Sin. 60 068902 (in Chinese) [高湘昀, 安海忠, 刘红红, 丁颖辉 2011 物理学报 60 068902]

    [33]

    Palla G, Barabási A L 2007 Nature 446 664

  • [1]

    Xin B G, Chen T, Liu Y Q 2011 Acta Phys. Sin. 60 048901 (in Chinese) [辛宝贵, 陈通, 刘艳芹 2011 物理学报 60 048901]

    [2]

    Zhang Y, Zhang J W, Wang Z X 2004 Physica 33 734 (in Chinese) [张宇, 张建玮, 王正行 2004 物理 33 734]

    [3]

    Huang W Q, Zhuang X T, Yao S 2009 Physica A 388 2956

    [4]

    Mantegna R N 1999 Eur. Phys. J. B 11 193

    [5]

    Battiston S, Rodrigues J F, Zeytinoglu H 2007 Adv. Complex Syst. 10 29

    [6]

    Ma Y, Zhuang X, Li L 2011 Physica A 390 749

    [7]

    Park K, Shin H 2013 Eng. Appl. Artif. Intel. 26 1550

    [8]

    Caraiani P 2013 Physica A 391 3629

    [9]

    Cohen L, Frazzini A, Malloy C 2007 J. Polit. Econ. 116 951

    [10]

    Pareek A 2012 AFA 2010 Atlanta Meetings Paper (Georgia: Atlant)

    [11]

    Hong H, Kubik J D, Stein J C 2005 J. Finance 60 2801

    [12]

    Callen J L, Fang X H 2013 J. Banking Finance 37 3047

    [13]

    An H, Zhang T 2013 J. Corp. Finance 21 1

    [14]

    Wang G J, Xie C, Chen S, Yang J J, Yang M Y 2013 Physica A 392 3715

    [15]

    Kim D H, Cha M Y, Lee J W 2011 Comput. Phys. 182 243

    [16]

    Jayasuriya S A 2011 Emerg. Markets Rev. 12 418

    [17]

    Kotkatvuori-Örnberg J, Nikkinen J, Äijö J 2013 International Rev. Financial Analysis 28 70

    [18]

    Heaney R, Sriananthakumar S 2012 J. Empir. Finance 19 583

    [19]

    Hiang Liow K 2012 Real Estate Economics 40 97

    [20]

    Cao G, Xu L, Cao J 2012 Physica A 391 4855

    [21]

    Chang C L, McAleer M, Tansuchat R 2012 North Amenican J. Econonics Finance 25 116

    [22]

    Wang G J, Xie C 2012 Acta Phys. Pol. B 43 2021

    [23]

    Jegadeesh N, Titman S 1993 J. Finance 48 65

    [24]

    Shiller R J, Pound J 1989 J. Econ. Behav. Organ. 12 47

    [25]

    Hong H, Kubik J D, Stein J C 2005 J. Finance 60 2801

    [26]

    Kacperczyk M, Seru A 2007 J. Finance 62 485

    [27]

    Wasserman S, Fraut K 1994 Social Network Analysis: Methods and Application (New York: Cambridge University Press) p356

    [28]

    Mao X M, Sun K, Ouyang Q 2002 Chin. Phys. 11 1106

    [29]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901

    [30]

    Yook S H, Jeong H, Barabási A L, Tu Y 2001 Phys. Rev. Lett. 86 5835

    [31]

    Barrat A, Barthelemy M, Pastor S R, Vespignani A 2004 Proc. Nalt. Acad. Sci. USA 101 3747

    [32]

    Gao X Y, An H Z, Liu H H, Ding Y H 2011 Acta Phys. Sin. 60 068902 (in Chinese) [高湘昀, 安海忠, 刘红红, 丁颖辉 2011 物理学报 60 068902]

    [33]

    Palla G, Barabási A L 2007 Nature 446 664

  • [1] 谭索怡, 祁明泽, 吴俊, 吕欣. 复杂网络链路可预测性: 基于特征谱视角. 物理学报, 2020, 69(8): 088901. doi: 10.7498/aps.69.20191817
    [2] 汪丽娜, 成媛媛, 臧臣瑞. 基于seasonal-trend-loess方法的符号化时间序列网络. 物理学报, 2019, 68(23): 238901. doi: 10.7498/aps.68.20190794
    [3] 徐明, 许传云, 曹克非. 度相关性对无向网络可控性的影响. 物理学报, 2017, 66(2): 028901. doi: 10.7498/aps.66.028901
    [4] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [5] 郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月. 一种无线传感器网络健壮性可调的能量均衡拓扑控制算法. 物理学报, 2015, 64(8): 080101. doi: 10.7498/aps.64.080101
    [6] 周杰, 王亚林, 菊池久和. 多天线信道空间衰落相关性近似算法及其复杂性研究. 物理学报, 2014, 63(23): 230205. doi: 10.7498/aps.63.230205
    [7] 李黎, 郑庆华, 管晓宏. 基于有限资源提升网络可生存性的拓扑重构方法. 物理学报, 2014, 63(17): 170201. doi: 10.7498/aps.63.170201
    [8] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析. 物理学报, 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [9] 赵珊珊, 何文平. 基于长程相关性特征的北京气候中心气候系统模式对中国气温的模拟性能评估. 物理学报, 2014, 63(20): 209201. doi: 10.7498/aps.63.209201
    [10] 刘晓云, 王劲松, 李栋梁, 岳平, 李耀辉, 姚玉璧. 黄土高原中部秋季干湿的年际和年代际环流异常特征及与海温的多尺度相关性研究. 物理学报, 2013, 62(21): 219202. doi: 10.7498/aps.62.219202
    [11] 龚志强, 支蓉, 侯威, 王晓娟, 封国林. 基于复杂网络的北半球遥相关年代际变化特征研究. 物理学报, 2012, 61(2): 029202. doi: 10.7498/aps.61.029202
    [12] 王闪闪, 管玉平, Li Zhi-Jin, Chao Yi, 黄建平. 黑潮及其延伸区海表温度变化特征与大气环流相关性的初步分析. 物理学报, 2012, 61(16): 169201. doi: 10.7498/aps.61.169201
    [13] 高湘昀, 安海忠, 方伟. 基于复杂网络的时间序列双变量相关性波动研究. 物理学报, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [14] 高湘昀, 安海忠, 刘红红, 丁颖辉. 原油期货与现货价格联动性的复杂网络拓扑性质. 物理学报, 2011, 60(6): 068902. doi: 10.7498/aps.60.068902
    [15] 王启光, 侯威, 郑志海, 高荣. 东亚区域大气长程相关性. 物理学报, 2009, 58(9): 6640-6650. doi: 10.7498/aps.58.6640
    [16] 封国林, 龚志强, 侯威, 王启光, 支蓉. 气象领域极端事件的长程相关性. 物理学报, 2009, 58(4): 2853-2861. doi: 10.7498/aps.58.2853
    [17] 王启光, 支 蓉, 张增平. Lorenz系统长程相关性研究. 物理学报, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [18] 刘 慧, 张 军. 基于节点相关性的网络不动点理论研究. 物理学报, 2007, 56(4): 1952-1957. doi: 10.7498/aps.56.1952
    [19] 程 勇, 张 雄, 伍 林, 毛慰明, 尤莉莎. 用离散相关函数方法分析Blazar天体的γ射线和射电辐射的相关性. 物理学报, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [20] 黎永清, 王育竹. 利用光子相关性降低量子噪声. 物理学报, 1989, 38(3): 476-480. doi: 10.7498/aps.38.476
计量
  • 文章访问数:  6210
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-28
  • 修回日期:  2013-10-29
  • 刊出日期:  2014-02-05

/

返回文章
返回