搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能

张嵩波 王方标 李发铭 温戈辉

引用本文:
Citation:

高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能

张嵩波, 王方标, 李发铭, 温戈辉

HPHT synthesis and magnetic property of -Fe2O3@C core-shell nanorods

Zhang Song-Bo, Wang Fang-Biao, Li Fa-Ming, Wen Ge-Hui
PDF
导出引用
  • 采用高温高压(HPHT)方法,以水热法制备的聚乙烯醇包覆FeOOH纳米棒为前驱体,合成了碳包覆-Fe2O3纳米棒. 通过使用多种表征方法,研究了HPHT过程中合成温度对样品结构和形貌的影响,并对样品的生长机理进行了探讨. 利用振动样品磁强计测量了样品的室温磁学性质. 实验结果表明,反应温度为400 ℃,压强为1 GPa条件下制备的碳包覆-Fe2O3纳米棒具有较高的长径比(直径约为20 nm,长度约为150 nm),矫顽力可达到330 Oe(1 Oe=79.5775 A/m). 该方法为制备具有核壳结构的一维纳米材料提供了新思路.
    -Fe2O3@C core-shell nanorods with average diameter of 20 nm and length of 150 nm are synthesized by transforming FeOOH@PVA nanorods under the condition of high pressure and high temperature (HPHT). The FeOOH@PVA nanorods are prepared via a hydrothermal route. The best synthesis condition for transforming FeOOH@PVA core-shell nanorods into -Fe2O3@C nanorods is 400 ℃ under 1 GPa. Owing to high aspect ratios, the -Fe2O3@C nanorods present a high coercivity of 330 Oe (10 Oe=79.5775 A/m). The possible mechanism for the synthesis of -Fe2O3@C nanorods is also discussed. The HTHP method can provide a new way for preparing of one-dimensional core-shell nanostructures.
    • 基金项目: 国家自然科学基金(批准号:50972048)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50972048).
    [1]

    Fu X L, Wang Y, Li P G, Chen L M, Zhang H Y, Tu Q Y, Li L H, Tang W H 2005 Acta Phys. Sin. 54 1693 (in Chinese) [符秀丽, 王懿, 李培刚, 陈雷明, 张海英, 涂青云, Li L H, 唐为华 2005 物理学报 54 1693]

    [2]

    Li F S, Wang T, Wang Y 2005 Acta Phys. Sin. 54 3100 (in Chinese) [李发伸, 王涛, 王颖 2005 物理学报 54 3100]

    [3]

    Fu W Y, Cao J, Li Y X, Yang H B 2011 Acta Phys. Sin. 60 067505 (in Chinese) [付乌有, 曹静, 李伊荇, 杨海滨 2011 物理学报 60 067505]

    [4]

    Yin J H, Pan L Q 2010 Chin. Phys. B 19 57502

    [5]

    Chen W B, Han M G, Deng L J 2011 Acta Phys. Sin. 60 017507 (in Chinese) [陈文兵, 韩满贵, 邓龙江 2011 物理学报 60 017507]

    [6]

    Wu W, Xiao X H, Zhang S F, Zhou J, Fan L X, Ren F, Jiang C Z 2010 J. Phys. Chem. C 114 16092

    [7]

    Liu F, Zhu J H, Hou Y L, Gao S 2013 Chin. Phys. B 22 107503

    [8]

    Jiang G H, Jiang J S 2005 J. Inorg. Mater. 20 1066 (in Chinese) [姜国华, 姜继森 2005 无机材料学报 20 1066]

    [9]

    Rao P M, Zheng X L 2011 Nano Lett. 11 2390

    [10]

    Wang J H, Ma Y W, Watanabe K 2008 Chem. Mater. 20 20

    [11]

    Zhou S M, Zhang X T, Gong H C, Zhang B, Wu Z S, Du Z L, Wu S X 2008 J. Phys.: Condens. Matter. 20 75217

    [12]

    Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W H 2001 Langmuir 17 2900

    [13]

    Kong H, Song J, Jang J 2010 Chem. Commun. 46 6735

    [14]

    Sun S N, Wei C, Zhu Z Z, Hou Y L, Venkatraman S S, Xu Z C 2014 Chin. Phys. B 23 37503

    [15]

    Yang X T, Xu L G, Choon N S, Chan S O H 2003 Nanotechnology 14 624

    [16]

    Li D, Teoh W Y, Woodward R C, Cashion J D, Selomulya C, Amal R 2009 J. Phys. Chem. C 113 12040

    [17]

    Gonsalves K E, Li H, Santiago P 2001 J. Mater. Sci. 36 2461

    [18]

    Chen J Y, Zheng H F, Zeng Y S 2000 Sci. Technol. Rev. 6 13 (in Chinese)[陈晋阳, 郑海飞, 曾贻善 2000 科技导报 6 13]

    [19]

    Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202 (in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣 2013 物理学报 62 026202]

    [20]

    Qin J M, Wang H, Zeng F M, Li J L, Wan Y C, Liu J H 2010 Acta Phys. Sin. 59 8910 (in Chinese)[秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和 2010 物理学报 59 8910]

    [21]

    Yang C C 2007 J. Membrane Sci. 288 51

    [22]

    Chaudhari N S, Warule S S, Muduli S, Kale B B, Jouen S, Lefez B, Hannoyer B, Ogale S B 2011 Dalton Trans. 40 8003

    [23]

    Wu P, Du N, Zhang H, Yu J X, Yang D R 2011 J. Phys. Chem. C 115 3612

    [24]

    Kim J H, Min B R, Lee K B, Won J, Kang Y S 2002 Chem. Commun. 2732

    [25]

    Wang Y, Teng X W, Wang J S, Yang H 2003 Nano Lett. 3 789

    [26]

    Qi Y Y, Chen W, Mai L Q, Hu B, Dai Y 2007 Chinese J. Inorg. Chem. 23 1895 (in Chinese) [祁琰媛, 陈文, 麦立强, 胡彬, 戴英 2007 无机化学学报 23 1895]

  • [1]

    Fu X L, Wang Y, Li P G, Chen L M, Zhang H Y, Tu Q Y, Li L H, Tang W H 2005 Acta Phys. Sin. 54 1693 (in Chinese) [符秀丽, 王懿, 李培刚, 陈雷明, 张海英, 涂青云, Li L H, 唐为华 2005 物理学报 54 1693]

    [2]

    Li F S, Wang T, Wang Y 2005 Acta Phys. Sin. 54 3100 (in Chinese) [李发伸, 王涛, 王颖 2005 物理学报 54 3100]

    [3]

    Fu W Y, Cao J, Li Y X, Yang H B 2011 Acta Phys. Sin. 60 067505 (in Chinese) [付乌有, 曹静, 李伊荇, 杨海滨 2011 物理学报 60 067505]

    [4]

    Yin J H, Pan L Q 2010 Chin. Phys. B 19 57502

    [5]

    Chen W B, Han M G, Deng L J 2011 Acta Phys. Sin. 60 017507 (in Chinese) [陈文兵, 韩满贵, 邓龙江 2011 物理学报 60 017507]

    [6]

    Wu W, Xiao X H, Zhang S F, Zhou J, Fan L X, Ren F, Jiang C Z 2010 J. Phys. Chem. C 114 16092

    [7]

    Liu F, Zhu J H, Hou Y L, Gao S 2013 Chin. Phys. B 22 107503

    [8]

    Jiang G H, Jiang J S 2005 J. Inorg. Mater. 20 1066 (in Chinese) [姜国华, 姜继森 2005 无机材料学报 20 1066]

    [9]

    Rao P M, Zheng X L 2011 Nano Lett. 11 2390

    [10]

    Wang J H, Ma Y W, Watanabe K 2008 Chem. Mater. 20 20

    [11]

    Zhou S M, Zhang X T, Gong H C, Zhang B, Wu Z S, Du Z L, Wu S X 2008 J. Phys.: Condens. Matter. 20 75217

    [12]

    Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W H 2001 Langmuir 17 2900

    [13]

    Kong H, Song J, Jang J 2010 Chem. Commun. 46 6735

    [14]

    Sun S N, Wei C, Zhu Z Z, Hou Y L, Venkatraman S S, Xu Z C 2014 Chin. Phys. B 23 37503

    [15]

    Yang X T, Xu L G, Choon N S, Chan S O H 2003 Nanotechnology 14 624

    [16]

    Li D, Teoh W Y, Woodward R C, Cashion J D, Selomulya C, Amal R 2009 J. Phys. Chem. C 113 12040

    [17]

    Gonsalves K E, Li H, Santiago P 2001 J. Mater. Sci. 36 2461

    [18]

    Chen J Y, Zheng H F, Zeng Y S 2000 Sci. Technol. Rev. 6 13 (in Chinese)[陈晋阳, 郑海飞, 曾贻善 2000 科技导报 6 13]

    [19]

    Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202 (in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣 2013 物理学报 62 026202]

    [20]

    Qin J M, Wang H, Zeng F M, Li J L, Wan Y C, Liu J H 2010 Acta Phys. Sin. 59 8910 (in Chinese)[秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和 2010 物理学报 59 8910]

    [21]

    Yang C C 2007 J. Membrane Sci. 288 51

    [22]

    Chaudhari N S, Warule S S, Muduli S, Kale B B, Jouen S, Lefez B, Hannoyer B, Ogale S B 2011 Dalton Trans. 40 8003

    [23]

    Wu P, Du N, Zhang H, Yu J X, Yang D R 2011 J. Phys. Chem. C 115 3612

    [24]

    Kim J H, Min B R, Lee K B, Won J, Kang Y S 2002 Chem. Commun. 2732

    [25]

    Wang Y, Teng X W, Wang J S, Yang H 2003 Nano Lett. 3 789

    [26]

    Qi Y Y, Chen W, Mai L Q, Hu B, Dai Y 2007 Chinese J. Inorg. Chem. 23 1895 (in Chinese) [祁琰媛, 陈文, 麦立强, 胡彬, 戴英 2007 无机化学学报 23 1895]

计量
  • 文章访问数:  2197
  • PDF下载量:  999
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-17
  • 修回日期:  2014-03-31
  • 刊出日期:  2014-05-05

高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能

  • 1. 吉林大学超硬材料国家重点实验室, 吉林 130012
    基金项目: 

    国家自然科学基金(批准号:50972048)资助的课题.

摘要: 采用高温高压(HPHT)方法,以水热法制备的聚乙烯醇包覆FeOOH纳米棒为前驱体,合成了碳包覆-Fe2O3纳米棒. 通过使用多种表征方法,研究了HPHT过程中合成温度对样品结构和形貌的影响,并对样品的生长机理进行了探讨. 利用振动样品磁强计测量了样品的室温磁学性质. 实验结果表明,反应温度为400 ℃,压强为1 GPa条件下制备的碳包覆-Fe2O3纳米棒具有较高的长径比(直径约为20 nm,长度约为150 nm),矫顽力可达到330 Oe(1 Oe=79.5775 A/m). 该方法为制备具有核壳结构的一维纳米材料提供了新思路.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回