搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

互相关自适应加权的医学超声成像算法研究

郑驰超 彭虎 韩志会

引用本文:
Citation:

互相关自适应加权的医学超声成像算法研究

郑驰超, 彭虎, 韩志会

Medical ultrasound imaging based on cross-correlation adaptive weighting

Zheng Chi-Chao, Peng Hu, Han Zhi-Hui
PDF
导出引用
  • 根据超声成像系统的超声回波信号互相关性,提出互相关自适应加权超声成像算法. 该算法根据散射点回波信号之间的空间相关性设置加权系数,对不同位置的散射点进行自适应加权成像,从而降低了成像系统的旁瓣,抑制了相关性较差的噪声. 通过Field Ⅱ 仿真的点目标和吸声斑目标处理结果表明该方法成像的横向和纵向分辨率高,成像速度快. 相对于延时叠加(DAS)算法,该算法对散射点成像可提高对比度16 dB,对于吸声斑成像可提高对比度0.85 dB. 最后采用完备数据集进行实验,结果表明该算法成像分辨率优于DAS算法,对比度提高了17 dB.
    According to the cross-correlation between the ultrasonic echo signals of ultrasonic imaging system, ultrasonic imaging algorithm based on cross-correlation adaptive weighting is introduced. This method determines the weight on the correlation between the echo signals of scatters at different positions, and then the adaptive weighted imaging is performed. The sidelobe and the noise which has the low correlation are suppressed. Simulations to points object and speckle object pattern using Field Ⅱ show that the method of imaging fast, and it can give a high horizontal and longitudinal resolution. Compared with delay and sum (DAS) algorithm, the contrast of the image to point object is increased by 16 dB. The contrast of the image to sound-absorbing speckle is increased by 0.85 dB. The results of experiments in which the complete data sets are used, show that the resolution is better than that of DAS algorithm and the contrast is increased by 17 dB.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61201060)和国家自然科学基金(批准号:61172037)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61201060) and the National Natural Science Foundation of China (Grant No. 61172037).
    [1]

    Peng J S, Peng H 2012 Acta Phys. Sin. 61 248701 (in Chinese) [彭京思, 彭虎 2012 物理学报 61 248701]

    [2]

    Zheng Z G, Ta D A 2012 Acta Phys. Sin. 61 134304 (in Chinese) [张正罡, 他得安 2012 物理学报 61 134304]

    [3]

    Zhao G M, Lu M Z, Wan M X, Fang L 2009 Acta Phys. Sin. 58 6603 (in Chinese) [赵贵敏, 陆明珠, 万明习, 方莉 2009 物理学报 58 6603]

    [4]

    Yu J, Chen C Y, Chen G, Guo X S, Ma Y, Tu J, Zhang D 2014 Chin. Phys. Lett. 31 034302

    [5]

    Lu M Z, Wu Y P, Shi Y, Guan Y B, Guo X L, Wan M X 2012 Chin. Phys. Lett. 29 124302

    [6]

    Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H, Chen W Z 2012 Chin. Phys. B 21 074301

    [7]

    Mehdizadeh S, Austeng A, Johansen T F, Holm S 2012 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 59 683

    [8]

    Asl B M, Mahloojifar A 2011 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 58 858

    [9]

    Asl B M, Mahloojifar A 2009 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 56 1923

    [10]

    Li P C, Li M L 2003 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 50 128

    [11]

    Li M L, Guan W J, Li P C 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 63

    [12]

    Zheng C C, Peng H, Han Z H 2012 Acta Acustica 37 637 (in Chinese) [郑驰超, 彭虎, 韩志会 2012 声学学报 37 637]

    [13]

    Sakhaei S M 2012 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 59 799

    [14]

    Wu W T, Pu J, L Y 2011 Acta Acustica 36 66 (in Chinese) [吴文焘, 蒲杰, 吕燚 2011 声学学报 36 66]

    [15]

    Camacho J, Parrilla M, Fritsch C 2009 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 56 958

    [16]

    Torbatian Z, Adamson R, Bance M, Brown J A 2010 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 57 2588

    [17]

    Jensen J A 1996 Med. Biol. Eng. Comput. 34 351

  • [1]

    Peng J S, Peng H 2012 Acta Phys. Sin. 61 248701 (in Chinese) [彭京思, 彭虎 2012 物理学报 61 248701]

    [2]

    Zheng Z G, Ta D A 2012 Acta Phys. Sin. 61 134304 (in Chinese) [张正罡, 他得安 2012 物理学报 61 134304]

    [3]

    Zhao G M, Lu M Z, Wan M X, Fang L 2009 Acta Phys. Sin. 58 6603 (in Chinese) [赵贵敏, 陆明珠, 万明习, 方莉 2009 物理学报 58 6603]

    [4]

    Yu J, Chen C Y, Chen G, Guo X S, Ma Y, Tu J, Zhang D 2014 Chin. Phys. Lett. 31 034302

    [5]

    Lu M Z, Wu Y P, Shi Y, Guan Y B, Guo X L, Wan M X 2012 Chin. Phys. Lett. 29 124302

    [6]

    Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H, Chen W Z 2012 Chin. Phys. B 21 074301

    [7]

    Mehdizadeh S, Austeng A, Johansen T F, Holm S 2012 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 59 683

    [8]

    Asl B M, Mahloojifar A 2011 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 58 858

    [9]

    Asl B M, Mahloojifar A 2009 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 56 1923

    [10]

    Li P C, Li M L 2003 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 50 128

    [11]

    Li M L, Guan W J, Li P C 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 63

    [12]

    Zheng C C, Peng H, Han Z H 2012 Acta Acustica 37 637 (in Chinese) [郑驰超, 彭虎, 韩志会 2012 声学学报 37 637]

    [13]

    Sakhaei S M 2012 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 59 799

    [14]

    Wu W T, Pu J, L Y 2011 Acta Acustica 36 66 (in Chinese) [吴文焘, 蒲杰, 吕燚 2011 声学学报 36 66]

    [15]

    Camacho J, Parrilla M, Fritsch C 2009 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 56 958

    [16]

    Torbatian Z, Adamson R, Bance M, Brown J A 2010 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 57 2588

    [17]

    Jensen J A 1996 Med. Biol. Eng. Comput. 34 351

  • [1] 姚军财, 申静. 基于图像内容对比感知的图像质量客观评价. 物理学报, 2020, 69(14): 148702. doi: 10.7498/aps.69.20200335
    [2] 周博睿, 谈宜东, 沈学举, 朱开毅, 鲍丽萍. 微泡造影剂增强超声调制激光回馈成像对比度的机理研究. 物理学报, 2019, 68(21): 214304. doi: 10.7498/aps.68.20190770
    [3] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术. 物理学报, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [4] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [5] 吴元庆, 王洋, 张延涛, 张宇峰, 刘春梅. 对比度阈值函数修正对于NVThermIP模型的影响. 物理学报, 2018, 67(21): 210702. doi: 10.7498/aps.67.20180493
    [6] 周丽萍, 李培, 潘聪, 郭立, 丁志华, 李鹏. 高灵敏、高对比度无标记三维光学微血管造影系统与脑科学应用研究. 物理学报, 2016, 65(15): 154201. doi: 10.7498/aps.65.154201
    [7] 田恒, 朱京平, 张云尧, 管今哥, 侯洵. 浑浊介质中图像对比度与成像方式的关系. 物理学报, 2016, 65(8): 084201. doi: 10.7498/aps.65.084201
    [8] 郭业才, 张宁, 吴礼福, 孙心宇. 基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法. 物理学报, 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [9] 鲁昌兵, 许鹏, 鲍杰, 王朝辉, 张凯, 任杰, 刘艳芬. 快中子照相模拟分析与实验验证. 物理学报, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [10] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [11] 刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰. 强度涨落在热光鬼成像中的作用. 物理学报, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [12] 赵建领, 吴令安. 基于偏振叠加和干涉两种方法的可控光脉冲延时器. 物理学报, 2010, 59(5): 3260-3263. doi: 10.7498/aps.59.3260
    [13] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [14] 任 珉, 马爱群, Muhammad Ashfaq Ahmad, 曾 然, 刘树田, 马志民. 一类q变形广义相干叠加态的量子统计性质. 物理学报, 2007, 56(2): 845-853. doi: 10.7498/aps.56.845
    [15] 易煦农, 胡 巍, 罗海陆, 朱 静. 用高阶对比度研究光束的小尺度自聚焦. 物理学报, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [16] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究. 物理学报, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [17] 张 斌, 刘言军, 徐克璹. 全息聚合物弥散液晶器件电光特性的研究. 物理学报, 2004, 53(6): 1850-1855. doi: 10.7498/aps.53.1850
    [18] 路 洪, 郭光灿. 叠加的奇偶SU(1,1)相干态的统计性质. 物理学报, 1999, 48(8): 1433-1438. doi: 10.7498/aps.48.1433
    [19] 路 洪, 郭光灿. 叠加激发相干态的非经典性质. 物理学报, 1999, 48(9): 1644-1649. doi: 10.7498/aps.48.1644
    [20] 倪致祥. 非简谐振子广义相干态的叠加态. 物理学报, 1997, 46(9): 1687-1692. doi: 10.7498/aps.46.1687
计量
  • 文章访问数:  6112
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-10
  • 修回日期:  2014-03-06
  • 刊出日期:  2014-07-05

/

返回文章
返回