-
采用全波分析法对球面共形微带天线阵列进行了分析. 相比体-面积分方程, 采用球并矢格林函数的面积分方程法可以大幅减少未知量的数目, 进而缓解计算机内存压力. 微带天线阵列表面采用曲面三角形剖分, 可较精确地模拟球面特性. 首先, 引入边界电荷以及半Rao-Wilton-Glisson基函数, 成功实现了探针馈电, 并采用镜像法解决了馈电边处线积分奇异问题. 然后, 采用特征基函数法降低了阻抗矩阵的阶数, 并采取有效措施进一步节省内存和计算时间. 最后, 分析计算了不同尺寸的球面共形微带天线阵列的输入阻抗及远区场特性. 与文献和仿真软件结果进行比较, 证明了所提出的处理方法的正确性和有效性.
-
关键词:
- 球面共形微带天线阵列 /
- 面积分方程 /
- 曲面三角形 /
- 特征基函数
Spherical conformal microstrip antenna array which is used widely in the field of aeronautics is analyzed by the full wave analysis in this paper. Using the surface integral equation with spherical dyadic Green's function can decrease the number of unknowns remarkably, and also reduce the demand of memory as compared with the method using volume-surface integral equation. The curvilinear triangle is proposed to mesh the surface of the microstrip antenna array, which can simulate the characteristic of spherical surface accurately. Firstly, the problem about probe feed model is solved successfully by introducing the half Rao-Wilton-Glisson function and boundary charge, and the image method is used to treat the line integral singularity problem. Then, the characteristic basis function method is employed to further save memory and computation time further by reducing the rank of impedance matrix. Finally, the input impedance and far-field spherical conformal microstrip antenna array of different sizes are analyzed. Results are in good agreement with those in the literature and simulation software, and thus the validity and effectiveness of the analysis method are demonstrated.-
Keywords:
- spherical conformal microstrip antenna array /
- surface integral equation /
- curvilinear triangle /
- characteristic basis function
[1] Ma J, Guo L X, Wang A Q 2009 Chin. Phys. B 18 3431
[2] Zhang X Q, Wang J H, Li Z 2011 Acta Phys. Sin. 60 051301 (in Chinese) [张雪芹, 王均宏, 李铮 2011 物理学报 60 051301]
[3] Yuan N, Yeo T S, Nie X C, GanY B, Li L W 2006 IEEE Trans. Antenn. Propag. 54 554
[4] Que X F, Nie Z P 2006 Syst. Engineer. Electron. 28 1613 (in Chinese) [阙肖峰, 聂在平2006系统工程与电子技术28 1613]
[5] Wang X D, Werner D H, Turpin J P 2013 IEEE Trans. Antenn. Propag. 61 3149
[6] Wu J, Khamas S K, Cook G G 2012 IEEE Trans. Antenn. Propag. 60 3697
[7] Li W, Liu S B, Yang W 2010 Chin. Phys. B 19 030307
[8] Li L W, Kooi P S, Leong M S, Yeo T S 1994 IEEE Trans. Microw. Theo. Techn. 42 2302
[9] Khamas S K 2008 IEEE Trans. Antenn. Propag. 56 345
[10] William J B, Donald R W 1999 IEEE Trans. Antenn. Propag. 47 347
[11] Yang M, Ran X J, Cui Y, Wang R Q 2011 Chin. Phys. B 20 097201
[12] Dai Z D, Lu S 2005 Dyadic Green's Functions in Electromagnetic Theory (Wuhan:Wuhan Univerity Press) pp174-201 (in Chinese) [戴振铎, 鲁述2005电磁理论中的并矢格林函数(武汉, 武汉大学出版社)第174–201页]
[13] Khamas S K 2009 IEEE Trans. Antenn. Propag. 57 3827
[14] Khamas S K 2010 IEEE Trans. Antenn. Propag. 58 1003
[15] Khamas S K 2010 IEEE Trans. Antenn. Propag. 58 3743
[16] Yu T, Yin C Y, Liu H Y 2013 J. Appl. Sci. 31 544 (in Chinese) [于涛, 尹成友, 刘海义 2013 应用科学学报 31 544]
[17] Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95
[18] Hu J, Li Y K, Nie Z P, Zhao H P 2014 IEEE Trans. Antenn. Propag. 62 870
[19] Wang Z G, Sun Y F, Wang G H 2013 Acta Phys. Sin. 62 204102 (in Chinese) [王仲根, 孙玉发, 王国华 2013 物理学报 62 204102]
[20] Nie Z P, Wang H G 2003 Acta Phys. Sin. 52 3035 (in Chinese) [聂在平, 王浩刚 2003 物理学报 52 3035]
[21] Niksa B, Zvonimir S, Juraj B 2004 Microw. Opt. Technol. Lett. 40 387
[22] Xiao K 2010 Ph. D. Dissertation (Changsha: National University of Denfense Technology) (in Chinese) [肖科2010博士学位论文(长沙: 国防科学技术大学)]
-
[1] Ma J, Guo L X, Wang A Q 2009 Chin. Phys. B 18 3431
[2] Zhang X Q, Wang J H, Li Z 2011 Acta Phys. Sin. 60 051301 (in Chinese) [张雪芹, 王均宏, 李铮 2011 物理学报 60 051301]
[3] Yuan N, Yeo T S, Nie X C, GanY B, Li L W 2006 IEEE Trans. Antenn. Propag. 54 554
[4] Que X F, Nie Z P 2006 Syst. Engineer. Electron. 28 1613 (in Chinese) [阙肖峰, 聂在平2006系统工程与电子技术28 1613]
[5] Wang X D, Werner D H, Turpin J P 2013 IEEE Trans. Antenn. Propag. 61 3149
[6] Wu J, Khamas S K, Cook G G 2012 IEEE Trans. Antenn. Propag. 60 3697
[7] Li W, Liu S B, Yang W 2010 Chin. Phys. B 19 030307
[8] Li L W, Kooi P S, Leong M S, Yeo T S 1994 IEEE Trans. Microw. Theo. Techn. 42 2302
[9] Khamas S K 2008 IEEE Trans. Antenn. Propag. 56 345
[10] William J B, Donald R W 1999 IEEE Trans. Antenn. Propag. 47 347
[11] Yang M, Ran X J, Cui Y, Wang R Q 2011 Chin. Phys. B 20 097201
[12] Dai Z D, Lu S 2005 Dyadic Green's Functions in Electromagnetic Theory (Wuhan:Wuhan Univerity Press) pp174-201 (in Chinese) [戴振铎, 鲁述2005电磁理论中的并矢格林函数(武汉, 武汉大学出版社)第174–201页]
[13] Khamas S K 2009 IEEE Trans. Antenn. Propag. 57 3827
[14] Khamas S K 2010 IEEE Trans. Antenn. Propag. 58 1003
[15] Khamas S K 2010 IEEE Trans. Antenn. Propag. 58 3743
[16] Yu T, Yin C Y, Liu H Y 2013 J. Appl. Sci. 31 544 (in Chinese) [于涛, 尹成友, 刘海义 2013 应用科学学报 31 544]
[17] Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95
[18] Hu J, Li Y K, Nie Z P, Zhao H P 2014 IEEE Trans. Antenn. Propag. 62 870
[19] Wang Z G, Sun Y F, Wang G H 2013 Acta Phys. Sin. 62 204102 (in Chinese) [王仲根, 孙玉发, 王国华 2013 物理学报 62 204102]
[20] Nie Z P, Wang H G 2003 Acta Phys. Sin. 52 3035 (in Chinese) [聂在平, 王浩刚 2003 物理学报 52 3035]
[21] Niksa B, Zvonimir S, Juraj B 2004 Microw. Opt. Technol. Lett. 40 387
[22] Xiao K 2010 Ph. D. Dissertation (Changsha: National University of Denfense Technology) (in Chinese) [肖科2010博士学位论文(长沙: 国防科学技术大学)]
计量
- 文章访问数: 5806
- PDF下载量: 415
- 被引次数: 0