搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti2Bn(n=1–10)团簇的结构与稳定性:基于从头算的研究

王转玉 康伟丽 贾建峰 武海顺

引用本文:
Citation:

Ti2Bn(n=1–10)团簇的结构与稳定性:基于从头算的研究

王转玉, 康伟丽, 贾建峰, 武海顺

Structure and stability of Ti2Bn (n=1-10) clusters: an ab initio investigation

Wang Zhuan-Yu, Kang Wei-Li, Jia Jian-Feng, Wu Hai-Shun
PDF
导出引用
  • 采用密度泛函理论中的B3LYP方法, 结合从头算的CCSD(T)方法对Ti2Bn(n=1–10)团簇的稳定性和电子性质进行了研究. 发现两个Ti原子的掺杂导致Bn团簇结构发生了根本性变化. 随着n的增大, Ti2Bn团簇结构生长非常规律. 所有的最稳定结构都可看成双锥结构, 并且两个Ti原子处在双锥结构的锥顶. 根据二阶差分能量分析, 得出Ti2Bn(n=1–10)团簇的幻数是6, 7和8. 进一步分析了团簇的Ti原子解离能、B原子解离能以及团簇的电子亲和势和电离势. 这些能量分析表明Ti2B6团簇既有良好的热力学稳定性, 又有良好的动力学稳定性. 应用前线轨道理论, 对Ti原子与B6之间的成键进行了分析, 了解其稳定性的根源.
    Structures and stabilities of Ti2Bn (n=1-10) clusters have been systematically investigated by using the density-functional theory B3LYP method and ab initio CCSD(T) method. It is found that the ground state structures of the Bn clusters are substantially modified by doping two Ti atoms. Ti2Bn clusters have very clear growth patterns, namely to form bipyramid. All the most stable Ti2Bn can be visualized as bipyramids with the two Ti atoms located at the two apexes. Ti2B6, Ti2B7 and Ti2B8 are confirmed to be the magic number clusters based on the analysis of the second-order difference of energies. The dissociation energies, vertical ionization potentials and vertical electron affinities of Ti2Bn isomers are discussed. Ti2B6 cluster is found to be stable both kinetically and thermodynamically.
    • 基金项目: 国家自然科学基金(批准号:21031003)、国家自然科学基金青年科学基金(批准号:21103101)、教育部新世纪优秀人才支持计划(批准号:NCET-12-1035)和教育部科学技术研究重大项目基金(批准号:212022)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21031003), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21103101), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1035), and the Foundation for Key Program of Ministry of Education, China (Grant No. 212022).
    [1]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811

    [2]

    Boustani I 1997 Phys. Rev. B 55 16426

    [3]

    Tai T B, Grant D J, Nguyen M T, Dixon D A 2010 J. Phys. Chem. A 114 994

    [4]

    Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004

    [5]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827

    [6]

    Zhao J, Wang L, Li F, Chen Z 2010 J. Phys. Chem. A 114 9969

    [7]

    Quarles K D, Kah C B, Gunasinghe R N, Musin R N, Wang X Q 2011 J. Chem. Theory Comput. 7 2017

    [8]

    Li F, Jin P, Jiang D, Wang L, Zhang S B, Zhao J, Chen F 2012 J. Chem. Phys. 136 074302

    [9]

    Lu H, Mu Y, Bai H, Chen Q, Li S D 2013 J. Chem. Phys. 138 024701

    [10]

    Lu H, Li S D 2013 J. Chem. Phys. 139 224307

    [11]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat Commun. 5 3113

    [12]

    Romanescu C, Galeev T R, Sergeeva A P, Li W L, Wang L S, Boldyrev A I 2012 J. Organomet. Chem. 722 148

    [13]

    Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2011 Angew. Chem. Int. Ed. 50 9334

    [14]

    Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I 2012 Angew. Chem. Int. Ed. 51 2101

    [15]

    Li W L, Romanescu C, Galeev T R, Piazza Z A, Boldyrev A I, Wang L S 2011 J. Am. Chem. Soc. 134 165

    [16]

    Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2012 Acc. Chem. Res. 46 350

    [17]

    Luo Y H, Ge G X, Lei X L, Zhu H J, Wang X M 2008 Acta Phys. Sin. 57 5491 (in Chinese) [罗有华, 葛桂贤, 雷雪玲, 祝恒江, 王先明 2008 物理学报 57 5491]

    [18]

    Yang Z, Yan Y L, Zhao W J, Lei X L, Ge G X, Luo Y H 2007 Acta Phys. Sin. 56 2590 (in Chinese) [杨致, 闫玉丽, 赵文杰, 雷雪玲, 葛桂贤, 罗有华 2007 物理学报 56 2590]

    [19]

    Liu X, Zhao G F, Guo L J, Jing Q, Luo Y H 2007 Phys. Rev. A 75 063201

    [20]

    Yao J G, Wang X W, Wang Y X 2008 Chem. Phys. 351 1

    [21]

    Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese) [王剑锋, 贾建峰, 马丽娟, 武海顺 2012 化学学报 70 1643]

    [22]

    Jia J, Ma L, Wang J F, Wu H S 2013 J. Mol. Model. 19 3255

    [23]

    Cheng S B, Berkdemir C, Castleman A W 2014 Phys. Chem. Chem. Phys. 16 533

    [24]

    Li W L, Ivanov A S, Federič J, Romanescu C, Črnušák I, Boldyrev A I, Wang L S 2013 J. Chem. Phys. 139 104312

    [25]

    Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I 2006 J. Phys. Chem. A 110 1689

    [26]

    Xie L, Li W L, Romanescu C, Huang X, Wang L S 2013 J. Chem. Phys. 138 034308

    [27]

    Jia J, Li X, Li Y, Ma L, Wu H S 2014 Comput. Theoret. Chem. 1027 128

    [28]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [29]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [30]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2010 Gaussian 09 (Revision C.01) (Wallingford: Gaussian Inc.)

    [31]

    L J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104

    [32]

    Ruan W, Luo W L, Yu X G, Xie A D, Wu D L 2013 Acta Phys. Sin. 62 053103 (in Chinese) [阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰 2013 物理学报 62 053103]

    [33]

    Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102

    [34]

    Wang R X, Zhang D J, Zhu R X, Liu C B 2007 Acta Chim. Sin. 65 2092 (in Chinese) [王若曦, 张冬菊, 朱荣秀, 刘成卜 2007 化学学报 65 2092]

    [35]

    Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101

    [36]

    Dean J A 1992 Lange's Handbook of Chemistry (14 Ed.) (New York: McGraw-Hill) pp4.33-4.34

    [37]

    Lin K H, Chen H T, Chen H L, Lin J S, Ju S P, Tseng C F 2013 J. Nanosci. NanoTechnol. 13 1414

    [38]

    Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102

    [39]

    Zhang S, Qin Y, Ma M F, Lu C, Li G Q 2014 Chin. Phys. B 23 013601

    [40]

    Salazar-Villanueva M, Hernández Tejeda P H, Pal U, Rivas-Silva J F, Rodríguez Mora J I, Ascencio J A 2006 J. Phys. Chem. A 110 10274

    [41]

    Makov G. 1995 J. Phys. Chem. A 99 9337

  • [1]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811

    [2]

    Boustani I 1997 Phys. Rev. B 55 16426

    [3]

    Tai T B, Grant D J, Nguyen M T, Dixon D A 2010 J. Phys. Chem. A 114 994

    [4]

    Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004

    [5]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827

    [6]

    Zhao J, Wang L, Li F, Chen Z 2010 J. Phys. Chem. A 114 9969

    [7]

    Quarles K D, Kah C B, Gunasinghe R N, Musin R N, Wang X Q 2011 J. Chem. Theory Comput. 7 2017

    [8]

    Li F, Jin P, Jiang D, Wang L, Zhang S B, Zhao J, Chen F 2012 J. Chem. Phys. 136 074302

    [9]

    Lu H, Mu Y, Bai H, Chen Q, Li S D 2013 J. Chem. Phys. 138 024701

    [10]

    Lu H, Li S D 2013 J. Chem. Phys. 139 224307

    [11]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat Commun. 5 3113

    [12]

    Romanescu C, Galeev T R, Sergeeva A P, Li W L, Wang L S, Boldyrev A I 2012 J. Organomet. Chem. 722 148

    [13]

    Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2011 Angew. Chem. Int. Ed. 50 9334

    [14]

    Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I 2012 Angew. Chem. Int. Ed. 51 2101

    [15]

    Li W L, Romanescu C, Galeev T R, Piazza Z A, Boldyrev A I, Wang L S 2011 J. Am. Chem. Soc. 134 165

    [16]

    Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2012 Acc. Chem. Res. 46 350

    [17]

    Luo Y H, Ge G X, Lei X L, Zhu H J, Wang X M 2008 Acta Phys. Sin. 57 5491 (in Chinese) [罗有华, 葛桂贤, 雷雪玲, 祝恒江, 王先明 2008 物理学报 57 5491]

    [18]

    Yang Z, Yan Y L, Zhao W J, Lei X L, Ge G X, Luo Y H 2007 Acta Phys. Sin. 56 2590 (in Chinese) [杨致, 闫玉丽, 赵文杰, 雷雪玲, 葛桂贤, 罗有华 2007 物理学报 56 2590]

    [19]

    Liu X, Zhao G F, Guo L J, Jing Q, Luo Y H 2007 Phys. Rev. A 75 063201

    [20]

    Yao J G, Wang X W, Wang Y X 2008 Chem. Phys. 351 1

    [21]

    Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese) [王剑锋, 贾建峰, 马丽娟, 武海顺 2012 化学学报 70 1643]

    [22]

    Jia J, Ma L, Wang J F, Wu H S 2013 J. Mol. Model. 19 3255

    [23]

    Cheng S B, Berkdemir C, Castleman A W 2014 Phys. Chem. Chem. Phys. 16 533

    [24]

    Li W L, Ivanov A S, Federič J, Romanescu C, Črnušák I, Boldyrev A I, Wang L S 2013 J. Chem. Phys. 139 104312

    [25]

    Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I 2006 J. Phys. Chem. A 110 1689

    [26]

    Xie L, Li W L, Romanescu C, Huang X, Wang L S 2013 J. Chem. Phys. 138 034308

    [27]

    Jia J, Li X, Li Y, Ma L, Wu H S 2014 Comput. Theoret. Chem. 1027 128

    [28]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [29]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [30]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2010 Gaussian 09 (Revision C.01) (Wallingford: Gaussian Inc.)

    [31]

    L J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104

    [32]

    Ruan W, Luo W L, Yu X G, Xie A D, Wu D L 2013 Acta Phys. Sin. 62 053103 (in Chinese) [阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰 2013 物理学报 62 053103]

    [33]

    Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102

    [34]

    Wang R X, Zhang D J, Zhu R X, Liu C B 2007 Acta Chim. Sin. 65 2092 (in Chinese) [王若曦, 张冬菊, 朱荣秀, 刘成卜 2007 化学学报 65 2092]

    [35]

    Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101

    [36]

    Dean J A 1992 Lange's Handbook of Chemistry (14 Ed.) (New York: McGraw-Hill) pp4.33-4.34

    [37]

    Lin K H, Chen H T, Chen H L, Lin J S, Ju S P, Tseng C F 2013 J. Nanosci. NanoTechnol. 13 1414

    [38]

    Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102

    [39]

    Zhang S, Qin Y, Ma M F, Lu C, Li G Q 2014 Chin. Phys. B 23 013601

    [40]

    Salazar-Villanueva M, Hernández Tejeda P H, Pal U, Rivas-Silva J F, Rodríguez Mora J I, Ascencio J A 2006 J. Phys. Chem. A 110 10274

    [41]

    Makov G. 1995 J. Phys. Chem. A 99 9337

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析. 物理学报, 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [3] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究. 物理学报, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [4] 杨振辉, 王菊, 刘涌, 王慷慨, 苏婷, 郭春林, 宋晨路, 韩高荣. 锐钛矿相和金红石相Nb:TiO2电学性质的GGA(+U)法研究. 物理学报, 2014, 63(15): 157101. doi: 10.7498/aps.63.157101
    [5] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [6] 薛丽, 易林. Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响. 物理学报, 2013, 62(13): 138801. doi: 10.7498/aps.62.138801
    [7] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究. 物理学报, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [8] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [9] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究. 物理学报, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [10] 车晓芳, 陈宏善. (H2O)6的稳定结构及异构过程研究. 物理学报, 2011, 60(4): 043601. doi: 10.7498/aps.60.043601
    [11] 高潭华, 吴顺情, 胡春华, 朱梓忠. 二维BC2 N薄片的结构稳定性和电子性质. 物理学报, 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [12] 李仁全, 潘春玲, 文玉华, 朱梓忠. Ag原子链的结构稳定性和磁性. 物理学报, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [13] 王晓秋, 王保林. 嵌入La和Gd原子的Si24笼团簇的稳定性. 物理学报, 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [14] 林秋宝, 李仁全, 文玉华, 朱梓忠. Wn(n=3—27)原子团簇结构的第一性原理计算. 物理学报, 2008, 57(1): 181-185. doi: 10.7498/aps.57.181
    [15] 陈鲁倬, 王晓春, 文玉华, 朱梓忠. Nb二维原子薄片中的Jahn-Teller效应. 物理学报, 2007, 56(5): 2920-2925. doi: 10.7498/aps.56.2920
    [16] 李海铭, 巫 翔, 李 炯, 陈栋梁, 储旺盛, 吴自玉. 高压下LiF和NaF的结构稳定性及其电子和光学性质的第一性原理研究. 物理学报, 2007, 56(12): 7201-7206. doi: 10.7498/aps.56.7201
    [17] 王晓春, 林秋宝, 李仁全, 朱梓忠. 二维全同Nb4团簇在Cu(100)表面的结构稳定性和电子性质. 物理学报, 2007, 56(5): 2813-2820. doi: 10.7498/aps.56.2813
    [18] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究. 物理学报, 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
    [19] 沈汉鑫, 蔡娜丽, 文玉华, 朱梓忠. Nb原子链的结构稳定性和电子性质. 物理学报, 2005, 54(11): 5362-5366. doi: 10.7498/aps.54.5362
    [20] 祝生祥, 李 锐, 杨修文, 薛春荣. PuH2分子电子结构的DVM研究. 物理学报, 2003, 52(1): 67-71. doi: 10.7498/aps.52.67
计量
  • 文章访问数:  5718
  • PDF下载量:  619
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-20
  • 修回日期:  2014-07-25
  • 刊出日期:  2014-12-05

/

返回文章
返回