-
通过合金化改性技术, Ge可由间接带隙半导体转变为直接带隙半导体. 改性后的Ge半导体可同时应用于光子器件和电子器件, 极具发展潜力. 基于直接带隙Ge1-xSnx半导体合金8带Kronig-Penny模型, 重点研究了其导带有效状态密度、价带有效状态密度及本征载流子浓度, 旨在为直接带隙改性Ge半导体物理的理解及相关器件的研究设计提供有价值的参考. 研究结果表明: 直接带隙Ge1-xSnx合金导带有效状态密度随着Sn组分x的增加而明显减小, 价带有效状态密度几乎不随Sn组分变化. 与体Ge半导体相比, 直接带隙Ge1-xSnx合金导带有效状态密度、价带有效状态密度分别低两个和一个数量级; 直接带隙Ge1-xSnx合金本征载流子浓度随着Sn组分的增加而增加, 比体Ge半导体高一个数量级以上.Indirect bandgap Ge can be turned to a direct bandgap semiconductor by the alloy-modified technique, which can be applied to advanced photonic devices and electronic devices. Based on 8 bands Kronig-Penny Hamilton, this paper focuses on the physical parameters of direct bandgap Ge1-xSnx, such as conduction band effective density of states, valence band effective density of states and the intrinsic carrier concentration, and aims to provide valuable references for understanding the direct bandgap modified Ge materials and device physics as well as their applications. Results show that: conduction band effective density of states in direct bandgap Ge1-xSnx alloy decreases obviously with increasing Sn fraction, while its valence band effective density of states almost does not change with increasing Sn fraction. Compared with bulk Ge, the conduction band effective density of states and valence band effective density of states in direct bandgap Ge1-xSnx alloy are lower by two and one orders of magnitude respectively; the intrinsic carrier concentration in direct bandgap Ge1-xSnx alloy increases with increasing Sn fraction, and its value is an order of magnitude higher than that of bulk Ge.
-
Keywords:
- Ge1-xSnx /
- direct bandgap /
- intrinsic carrier concentration
[1] Michael O, Konrad K, Tzanimir A, Gregor M 2014 IEEE Photon. Technol. Lett. 26 187
[2] Zhang D L, Xue C, Cheng B, Su S J, Liu Z, Zhang X, Zhang G Z, Li C B, Wang Q M 2013 Appl. Phys. Lett. 102 141111
[3] Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907
[4] Soref R A, Sun G, Cheng H H 2012 J. Appl. Phys. 111 123113
[5] Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106
[6] Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menéndez J 2013 Appl. Phys. Lett. 103 202104
[7] Yang B, Cai M 2011 Sci. China: Inform. Sci. 54 946
[8] Michael O, Konrad K, Kaiheng Y, Stefan B, Kai U 2014 Opt. Express 22 839
[9] Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2010 Acta Phys. Sin. 59 2064 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜 2010 物理学报 59 2064]
[10] Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]
[11] Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827
[12] Kao K H, Verhulst A S, Put M V, Vandenberghe W G, Soree B, Magnus W, Meyer K D 2014 J. Appl. Phys. 115 044505
[13] Kurdi M E, Fishman G, Sauvage S, Boucaud P 2010 J. Appl. Phys. 107 013710
[14] Low K L, Yang Y, Han G, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715
[15] Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing: Defense Industry Press) p367 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1994 半导体物理学(北京: 国防工业出版社) 第367页]
-
[1] Michael O, Konrad K, Tzanimir A, Gregor M 2014 IEEE Photon. Technol. Lett. 26 187
[2] Zhang D L, Xue C, Cheng B, Su S J, Liu Z, Zhang X, Zhang G Z, Li C B, Wang Q M 2013 Appl. Phys. Lett. 102 141111
[3] Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907
[4] Soref R A, Sun G, Cheng H H 2012 J. Appl. Phys. 111 123113
[5] Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106
[6] Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menéndez J 2013 Appl. Phys. Lett. 103 202104
[7] Yang B, Cai M 2011 Sci. China: Inform. Sci. 54 946
[8] Michael O, Konrad K, Kaiheng Y, Stefan B, Kai U 2014 Opt. Express 22 839
[9] Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2010 Acta Phys. Sin. 59 2064 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜 2010 物理学报 59 2064]
[10] Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]
[11] Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827
[12] Kao K H, Verhulst A S, Put M V, Vandenberghe W G, Soree B, Magnus W, Meyer K D 2014 J. Appl. Phys. 115 044505
[13] Kurdi M E, Fishman G, Sauvage S, Boucaud P 2010 J. Appl. Phys. 107 013710
[14] Low K L, Yang Y, Han G, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715
[15] Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing: Defense Industry Press) p367 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1994 半导体物理学(北京: 国防工业出版社) 第367页]
计量
- 文章访问数: 7299
- PDF下载量: 584
- 被引次数: 0