搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双自旋系统中的量子失协问题研究

王丹琴 何创创

引用本文:
Citation:

双自旋系统中的量子失协问题研究

王丹琴, 何创创

Investigation of quantum discord for two-spin system

Wang Dan-Qin, He Chuang-Chuang
PDF
导出引用
  • 利用量子失协的几何度量方案研究了双自旋海森堡模型中的量子关联特性, 得到了一般情形下两量子态量子失协度的解析表达式, 讨论了量子位之间的耦合强度、温度和外加磁场强度等对量子关联大小的影响, 并给出了对应的量子关联调控方案. 此外还发现在低温下量子失协存在突变的现象. 结果表明, 在双自旋的海森堡模型体系下, 可以通过对系统参数(如温度、耦合强度、磁场强度等)的调节来实现对量子关联大小的有效调控, 这将会对在量子信息科学中精确控制量子失协和实现量子态的隐形传输以及量子逻辑门的设计提供一定的借鉴和指导意义.
    By adopting the concept of the geometric measure of quantum discord, we explore the property of quantum correlation in the two-spin Heisenberg model, gain the analytic expression of quantum discord in the general case, and discuss the influences of the coupling constant, temperature, the intensity of the external magnetic field on magnitude of the quantum correlation. The corresponding scheme of tuning quantum correlation is also given in this paper. In addition, we find that quantum discord has a sudden transition in the lower temperature. Results show that adjusting systematic parameters, which are temperature, coupling strength, magnetic field intensity, etc, is an effective way to control the value of quantum correlation in the double spin Heisenberg model system. This provides a certain reference and significant guidance for the precise control of quantum discord and realizing the teleportation of quantum state and the design of quantum logic gates.
    [1]

    Madhok V, Datta A 2013 Int. J. Mod. Phys. B 27 1345041

    [2]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [3]

    Hu M L, Fan H 2013 Phys. Rev. A 87 022314

    [4]

    Streltsov A, Zurek W H 2013 Phys. Rev. Lett. 111 040401

    [5]

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese) [郭亮, 梁先庭 2009 物理学报 58 50]

    [6]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [7]

    Cleve R, van Dam W, Nielsen M, Tapp A 2013 Theor. Comput. Sci. 486 11

    [8]

    Ávila M, Sun G H, Salas-Brito A L 2014 Adv. Math. Phys. 2014 4

    [9]

    Pang C Q, Zhang F L, Xu L F, Chen J L 2013 Phys. Rev. A 88 052331

    [10]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 物理学报 62 180301]

    [11]

    Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305

    [12]

    Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, Guo G C 2010 Nat. Commum. 1 7

    [13]

    Ding B F, Wang X Y, Liu J F, Yan L, Zhao H P 2012 Chin. Phys. Lett. 28 104216

    [14]

    Ferraro A, Aolota L, Cavalcanti D, Cucchietti F M, Acin A 2010 Phys. Rev. A 81 052318

    [15]

    Henderson L, Vedral V 2001 J. Phys. A: Math. Gen. 34 6899

    [16]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [17]

    Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502

    [18]

    Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501

    [19]

    Wei H R, Ren B C, Deng F G 2013 Quantum Inf. Process 12 1109

    [20]

    Chen L, Shao X Q, Zhang S 2009 Chin. Phys. B 18 188

    [21]

    Keshari S R, Caves C M, Ralph T C 2013 Phys. Rev. A 87 012119

    [22]

    Dakić B, Vedral V, Brukner Č 2010 Phys. Rev. Lett. 105 190502

    [23]

    Lu D M, Qiu C D 2014 Acta Phys. Sin. 63 110303 (in Chinese) [卢道明, 邱昌东 2014 物理学报 63 110303]

    [24]

    Sabapathy K K, lvan J S, Ghosh S, Simon R 2013 arXiv: 1304.4857v2

    [25]

    Montealegre J D, Paula F M, Saguia A, Sarandy M S 2013 Phys. Rev. A 87 042115

    [26]

    Liu B Q, Shao B, Li J G, Zou J, Wu L A 2011 Phys. Rev. A 83 052112

    [27]

    Li C Z 2000 Quantum Communication and Computing (Changsha: National University of Defence Technology Press) p78 (in Chinese) [李承祖2000量子通信与量子计算(长沙: 国防科技大学出版社)第78页]

  • [1]

    Madhok V, Datta A 2013 Int. J. Mod. Phys. B 27 1345041

    [2]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [3]

    Hu M L, Fan H 2013 Phys. Rev. A 87 022314

    [4]

    Streltsov A, Zurek W H 2013 Phys. Rev. Lett. 111 040401

    [5]

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese) [郭亮, 梁先庭 2009 物理学报 58 50]

    [6]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [7]

    Cleve R, van Dam W, Nielsen M, Tapp A 2013 Theor. Comput. Sci. 486 11

    [8]

    Ávila M, Sun G H, Salas-Brito A L 2014 Adv. Math. Phys. 2014 4

    [9]

    Pang C Q, Zhang F L, Xu L F, Chen J L 2013 Phys. Rev. A 88 052331

    [10]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 物理学报 62 180301]

    [11]

    Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305

    [12]

    Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, Guo G C 2010 Nat. Commum. 1 7

    [13]

    Ding B F, Wang X Y, Liu J F, Yan L, Zhao H P 2012 Chin. Phys. Lett. 28 104216

    [14]

    Ferraro A, Aolota L, Cavalcanti D, Cucchietti F M, Acin A 2010 Phys. Rev. A 81 052318

    [15]

    Henderson L, Vedral V 2001 J. Phys. A: Math. Gen. 34 6899

    [16]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [17]

    Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502

    [18]

    Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501

    [19]

    Wei H R, Ren B C, Deng F G 2013 Quantum Inf. Process 12 1109

    [20]

    Chen L, Shao X Q, Zhang S 2009 Chin. Phys. B 18 188

    [21]

    Keshari S R, Caves C M, Ralph T C 2013 Phys. Rev. A 87 012119

    [22]

    Dakić B, Vedral V, Brukner Č 2010 Phys. Rev. Lett. 105 190502

    [23]

    Lu D M, Qiu C D 2014 Acta Phys. Sin. 63 110303 (in Chinese) [卢道明, 邱昌东 2014 物理学报 63 110303]

    [24]

    Sabapathy K K, lvan J S, Ghosh S, Simon R 2013 arXiv: 1304.4857v2

    [25]

    Montealegre J D, Paula F M, Saguia A, Sarandy M S 2013 Phys. Rev. A 87 042115

    [26]

    Liu B Q, Shao B, Li J G, Zou J, Wu L A 2011 Phys. Rev. A 83 052112

    [27]

    Li C Z 2000 Quantum Communication and Computing (Changsha: National University of Defence Technology Press) p78 (in Chinese) [李承祖2000量子通信与量子计算(长沙: 国防科技大学出版社)第78页]

  • [1] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [2] 邵雅婷, 严凯, 吴银忠, 郝翔. 非对称自旋-轨道耦合系统的多体量子相干含时演化. 物理学报, 2021, 70(1): 010301. doi: 10.7498/aps.70.20201199
    [3] 张金峰, 阿拉帕提·阿不力米提, 杨帆, 艾克拜尔·阿木提江, 唐诗生, 艾合买提·阿不力孜. 不同外加磁场中Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用对量子失协非马尔科夫演化的影响. 物理学报, 2021, 70(22): 223401. doi: 10.7498/aps.70.20211277
    [4] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [5] 程景, 单传家, 刘继兵, 黄燕霞, 刘堂昆. Tavis-Cummings模型中的几何量子失协特性. 物理学报, 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [6] 郑军, 李春雷, 杨曦, 郭永. 四端双量子点系统中的自旋和电荷能斯特效应. 物理学报, 2017, 66(9): 097302. doi: 10.7498/aps.66.097302
    [7] 范竑锐, 袁亚丽, 侯喜文. 用两比特海森伯XY模型研究热几何失协. 物理学报, 2016, 65(22): 220301. doi: 10.7498/aps.65.220301
    [8] 秦猛, 李延标, 白忠. 非均匀磁场和杂质磁场对自旋1系统量子关联的影响. 物理学报, 2015, 64(3): 030301. doi: 10.7498/aps.64.030301
    [9] 苟立丹, 王晓茜. 杨-巴克斯特自旋1/2链模型的量子关联研究. 物理学报, 2015, 64(7): 070302. doi: 10.7498/aps.64.070302
    [10] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [11] 李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协. 物理学报, 2014, 63(3): 030301. doi: 10.7498/aps.63.030301
    [12] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [13] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
    [14] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [15] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [16] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [17] 肖贤波, 李小毛, 陈宇光. 含stubs量子波导系统的电子自旋极化输运性质. 物理学报, 2009, 58(11): 7909-7913. doi: 10.7498/aps.58.7909
    [18] 卢鹏, 王顺金. 两粒子自旋系统量子纠缠的时间演化. 物理学报, 2009, 58(9): 5955-5960. doi: 10.7498/aps.58.5955
    [19] 易林, 姚凯伦. 自旋玻璃系统的量子输运方程. 物理学报, 1994, 43(6): 1024-1028. doi: 10.7498/aps.43.1024
    [20] 应和平, U. J. WIESB. 量子自旋系统的块自旋方案及其簇团Monte Carlo模拟方法. 物理学报, 1993, 42(4): 665-673. doi: 10.7498/aps.42.665
计量
  • 文章访问数:  6204
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-10
  • 修回日期:  2014-10-04
  • 刊出日期:  2015-02-05

/

返回文章
返回