搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维高超声速后台阶表面传热特性实验研究

王小虎 易仕和 付佳 陆小革 何霖

引用本文:
Citation:

二维高超声速后台阶表面传热特性实验研究

王小虎, 易仕和, 付佳, 陆小革, 何霖

Experimental investigation on surface heat transfer characteristics of hypersonic two-dimensional rearward-facing step flow

Wang Xiao-Hu, Yi Shi-He, Fu Jia, Lu Xiao-Ge, He Lin
PDF
导出引用
  • 高超声速后台阶流动是大气层内高速飞行器发动机设计、表面热防护以及高超声速拦截器红外成像窗口气动光学效应校正等诸多先进高超声速技术研发过程中所涉及的一类基础流动问题. 研究高超声速后台阶流动特性对有效提升飞行器综合性能, 进一步掌握高超声速流动机理具有重大基础 意义. 本文以二维高超声速后台阶流动为研究对象, 在KD-01高超声速激波风洞中测量了二维后台阶模型表面传热系数和表面静压, 并将实测台阶下游表面传热系数分布同采用高超声速边界层理论所得估计值进行了比较. 为进一步验证实验结果, 使用NPLS技术测量了其中一种实验状态下台阶周围流动结构. 研究发现, 对于二维高超声速后台阶流动, 台阶下游表面传热分布受台阶处边界层外缘流动特性的直接影响; 在台阶下游分离区和再附区内, 气体黏性占主导作用; 在台阶下游远场区域, 边界层流动特性趋同于平板边界层; 下游边界层基本结构取决于台阶处边界层相对厚度. 对高超声速后台阶流动, 若使用数值模拟方法研究气动热问题, 应当使用湍流模型.
    Hypersonic rearward-facing step flow is one of the basic flow problems in the design of engine for endo-atmospheric hypersonic vehicle, including thermal protection, and aero-optical correction for infrared imaging window of hypersonic interceptors, etc. To know the characteristics of hypersonic rearward-facing step flow is of vital importance in improving the performances of vehicles, and understanding the basis of the flow. This paper investigates the characteristics of a two-dimensional hypersonic rearward-facing step flow, measures the surface heat transfer coefficient and the surface static pressure downstream the step, and compares the results with the values predicted using the hypersonic boundary layer theory. And the results are demonstrated by the flow structure visualization using NPLS (nano-based planar laser scattering) technique. It is concluded that for the hypersonic two-dimensional rearward-facing step flow, the surface heat transfer distribution can be determined directly by the boundary layer edge parameters at the step; and the viscous effect dominates the flow characteristic in the separation and reattachment region; whole in the far-field region downstream the step, the heat transfer coefficient approaches an asymptotic value that may be equal to the turbulent flat plate value. Furthermore, the boundary layer structure may depend on the ratio of boundary layer thickness to the height of step. It is concluded that, when studying the problem of hypersonic rearward-facing step using CFD (computational fluid dynamics) technology, choosing an appropriate turbulent model is needed.
    • 基金项目: 国家自然科学基金(批准号: 11172326, 11302256), 国防科技大学科研计划(批准号: 0100010112001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326, 11302256), and the Science Research Program of National University of Defense Technology, China (Grant No. 0100010112001).
    [1]

    Yin X L 2003 Aero-optical Mechanism (Beijing: China Astronautics Press) p1 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第1页]

    [2]

    Chapman D R 1956 A theoretical analysis of heat transfer in regions of separated flow (Moffett Field, California: Ames Aeronautical Laboratory) NACA-TN-3792

    [3]

    Chung P M, Viegas J R 1961 Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers (Washington: AMES Research Center) NASA TN D-1072

    [4]

    Rom J, Seginer 1964 AIAA J. 2 251

    [5]

    Scherberg M G, Smith H E 1967 AIAA J. 5 51

    [6]

    Wada I, Inoue Y 1972 J. Jpn. Soc. Aeronautical Space Sci. 20 661

    [7]

    Gai S L, Reynolds N T, Ross C, Baird J P 1989 J. Fluid Mech. 199 541

    [8]

    Reddeppa P, Nagashetty K, Saravanan S, Jagadeesh G, Gai S L 2011 J. Thermophysics Heat Transfer 25 321

    [9]

    Gai S L, Hayne M J 2010 J. Thermophysics Heat Transfer 24 839

    [10]

    East R A, Stalker R J, Baird J P 1980 J. Fluid Mech. 97 673

    [11]

    Mallinson S G, Gai S L, Mudford N R 1997 J. Fluid Mech. 342 1

    [12]

    Kim T H, Yoshikawa M, Obara T, Ohyagi S 2006 Shock Waves 15 1

    [13]

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 物理学报 63 134701]

    [14]

    Fu J 2012 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [付佳 2012 硕士学位论文 (长沙: 国防科学技术大学)]

    [15]

    Schultz D L, Jones T V 1973 Heat Transfer Measurements in Short-duration Hypersonic Facilities (London: University of Oxford) AGARD-AG-165

    [16]

    White F M 2006 Viscous Fluid Flow (3rd Ed.) (Singapore: McGraw Hill) p30

    [17]

    Qu Z H, Zeng M, Liu W, Liu J 1999 Hypersonic Gas Dynamics (Changsha: Press of NUDT) p111 (in Chinese) [瞿章华, 曾明, 刘伟, 柳军 1999 高超声速空气动力学(长沙: 国防科技大学出版社) 第111页]

  • [1]

    Yin X L 2003 Aero-optical Mechanism (Beijing: China Astronautics Press) p1 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第1页]

    [2]

    Chapman D R 1956 A theoretical analysis of heat transfer in regions of separated flow (Moffett Field, California: Ames Aeronautical Laboratory) NACA-TN-3792

    [3]

    Chung P M, Viegas J R 1961 Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers (Washington: AMES Research Center) NASA TN D-1072

    [4]

    Rom J, Seginer 1964 AIAA J. 2 251

    [5]

    Scherberg M G, Smith H E 1967 AIAA J. 5 51

    [6]

    Wada I, Inoue Y 1972 J. Jpn. Soc. Aeronautical Space Sci. 20 661

    [7]

    Gai S L, Reynolds N T, Ross C, Baird J P 1989 J. Fluid Mech. 199 541

    [8]

    Reddeppa P, Nagashetty K, Saravanan S, Jagadeesh G, Gai S L 2011 J. Thermophysics Heat Transfer 25 321

    [9]

    Gai S L, Hayne M J 2010 J. Thermophysics Heat Transfer 24 839

    [10]

    East R A, Stalker R J, Baird J P 1980 J. Fluid Mech. 97 673

    [11]

    Mallinson S G, Gai S L, Mudford N R 1997 J. Fluid Mech. 342 1

    [12]

    Kim T H, Yoshikawa M, Obara T, Ohyagi S 2006 Shock Waves 15 1

    [13]

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 物理学报 63 134701]

    [14]

    Fu J 2012 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [付佳 2012 硕士学位论文 (长沙: 国防科学技术大学)]

    [15]

    Schultz D L, Jones T V 1973 Heat Transfer Measurements in Short-duration Hypersonic Facilities (London: University of Oxford) AGARD-AG-165

    [16]

    White F M 2006 Viscous Fluid Flow (3rd Ed.) (Singapore: McGraw Hill) p30

    [17]

    Qu Z H, Zeng M, Liu W, Liu J 1999 Hypersonic Gas Dynamics (Changsha: Press of NUDT) p111 (in Chinese) [瞿章华, 曾明, 刘伟, 柳军 1999 高超声速空气动力学(长沙: 国防科技大学出版社) 第111页]

  • [1] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验. 物理学报, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层流动演化研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240128
    [3] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [4] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [5] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [6] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [7] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析. 物理学报, 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [8] 郑监, 张舵, 蒋邦海, 卢芳云. 气泡与自由液面相互作用形成水射流的机理研究. 物理学报, 2017, 66(4): 044702. doi: 10.7498/aps.66.044702
    [9] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [10] 朱杨柱, 易仕和, 孔小平, 何霖. 带喷流超声速后台阶流场精细结构及其运动特性研究. 物理学报, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [11] 李日, 王健, 周黎明, 潘红. 基于体积平均法模拟铸锭凝固过程的可靠性分析. 物理学报, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [12] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究. 物理学报, 2014, 63(19): 194703. doi: 10.7498/aps.63.194703
    [13] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [14] 朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰. 基于NPLS的超声速后台阶流场精细结构及其非定常特性. 物理学报, 2014, 63(13): 134701. doi: 10.7498/aps.63.134701
    [15] 陈亮, 郭仁拥, 塔娜. 双出口房间内疏散行人流的仿真和实验研究. 物理学报, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [16] 王诗平, 张阿漫, 刘云龙, 吴超. 圆形破口附近气泡动态特性实验研究. 物理学报, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [17] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [18] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [19] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [20] 张建民, 徐可为. 银和铜膜中异常晶粒生长和织构变化的实验研究. 物理学报, 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
计量
  • 文章访问数:  5354
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-08
  • 修回日期:  2014-11-04
  • 刊出日期:  2015-03-05

/

返回文章
返回