搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维晶格颗粒堆积中侧壁的压力分布与转向系数

杨林 胡林 张兴刚

引用本文:
Citation:

二维晶格颗粒堆积中侧壁的压力分布与转向系数

杨林, 胡林, 张兴刚

Lateral pressure distribution and steering coefficient in two-dimensional lattice pile of granular material

Yang Lin, Hu Lin, Zhang Xing-Gang
PDF
导出引用
  • 颗粒物质是大量颗粒聚集在一起的软凝聚态物质, 其微观结构与宏观力学性质的联系非常复杂. 本文用实验的方法观测了二维竖直晶格堆积颗粒, 在竖直方向外加正压力作用下其侧壁的受力分布情况, 根据实验结果详细讨论和分析了颗粒体系中正压力的转向行为. 实验结果表明: 在缓慢压缩颗粒体系的过程中, 正压力的变化呈现非线性和线性两段不同的规律; 对于确定堆积结构的颗粒体系, 竖直方向施加的正压力通过颗粒力链转向, 且水平方向不同堆积高度处所受压力值不同, 中部的压力大于顶部和底部的压力; 转向系数k的饱和值随堆积角θ 的增大而减小. 对颗粒堆的几何结构与受力情况进行分析, 给出了转向系数与堆积角之间的数学表达式, 理论值与实验值符合较好.
    Granular material is a kind of soft condensed matter, which gathers up a large number of particles, and the relation between its microstructure and macroscopic mechanical properties is very complex. In this paper, the lateral stress distribution of the two-dimensional vertically stacked lattice of granular material under a pressure in the vertical direction has been investigated experimentally. The steering behavior of the vertical pressure in a granular system is discussed and analyzed in detail based on the experimental results. Results show that in the process of slow compression, the vertical pressure increases slowly in a nonlinear form at first and gradually transforms into a linear increase. This phenomenon corresponds to the dynamic processes of friction-slip-extrusion. This kind of behavior is more significant in the particle system of the same size. In the initial stage of pressing, the vertical force of the stepping motor is mainly used to overcome the friction between the particles and the sliding friction between the particle and the wall. As the friction in the granular system is related to the geometry of the particulate deposits, the material of particles, the roughness of the wall surface, and other relevant factors, the front-end of vertical pressure displays nonlinear characteristics. Continuing the squeeze and push forward, a force chain is formed among particles through self-organization. The vertical force is mainly used to overcome the elastic pressing force between the particles and the force to the wall, so later on the vertical pressure performs linear growth. For the system of particles with an established packed structure, the vertical pressure applied in the vertical direction steers along the force chain between the particles, and the value of horizontal pressure is different at different stacking heights. That is, the pressure in the middle is greater than that at the top and the bottom. The saturated value of steering coefficient k decreases with the stacking angle θ. As the stacking angle increases, the vertical component of the stress becomes more pronounced than its horizontal component. The expression of steering coefficients against stacking angle has been obtained through careful analysis of the geometrical structure and the force distribution of the granular pile, and the theoretical value fit well with the experimental results.
    • 基金项目: 国家自然科学基金(批准号:11264006)、贵州省长专项基金(黔省专合字2010-5)和贵州大学引进人才科研基金(批准号:201334)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264006), the Special Foundation of Guizhou Provincial Governor, China (Guizhou Province Specialized Cooperative. 2010-5), and the Introduction of Talents in Scientific Research Foundation of Guizhou University, China (Grant No. 201334).
    [1]

    Ball R C, Blumenfeld R 2002 Phys. Rev. Lett. 88 115505

    [2]

    Edwards S F, Grinev D V, Brujic J 2003 Physica A 330 61

    [3]

    DeGiuli E, McElwaine J 2011 Phys. Rev. E 84 041310

    [4]

    Blumenfeld R 2007 New Journal of Physics 9 160

    [5]

    Gerritsena M, Kreissb G, Blumenfeld R 2008 Physica A 387 6263

    [6]

    Majmudar T S, Behringer R P 2005 Nature 435 1079

    [7]

    Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 0030 (in Chinese) [孙其城, 金峰, 王光谦, 张国华 2010 物理学报 59 0030]

    [8]

    Blumenfeld R 2004 Phys. Rev. Lett. 93 108310

    [9]

    Lu K Q, Hou M Y, Jiang Z H, Wang Q, Sun G, Liu J X 2012 Acta Phys. Sin. 61 119103 (in Chinese) [陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星 2012 物理学报 61 119103]

    [10]

    Wu D P, Li X X, Qin Q, Gan B, Zang Y 2014 Acta Phys. Sin. 63 098201 (in Chinese) [吴迪平, 李星祥, 秦勤, 管奔, 臧勇 2014 物理学报 63 098201]

  • [1]

    Ball R C, Blumenfeld R 2002 Phys. Rev. Lett. 88 115505

    [2]

    Edwards S F, Grinev D V, Brujic J 2003 Physica A 330 61

    [3]

    DeGiuli E, McElwaine J 2011 Phys. Rev. E 84 041310

    [4]

    Blumenfeld R 2007 New Journal of Physics 9 160

    [5]

    Gerritsena M, Kreissb G, Blumenfeld R 2008 Physica A 387 6263

    [6]

    Majmudar T S, Behringer R P 2005 Nature 435 1079

    [7]

    Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 0030 (in Chinese) [孙其城, 金峰, 王光谦, 张国华 2010 物理学报 59 0030]

    [8]

    Blumenfeld R 2004 Phys. Rev. Lett. 93 108310

    [9]

    Lu K Q, Hou M Y, Jiang Z H, Wang Q, Sun G, Liu J X 2012 Acta Phys. Sin. 61 119103 (in Chinese) [陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星 2012 物理学报 61 119103]

    [10]

    Wu D P, Li X X, Qin Q, Gan B, Zang Y 2014 Acta Phys. Sin. 63 098201 (in Chinese) [吴迪平, 李星祥, 秦勤, 管奔, 臧勇 2014 物理学报 63 098201]

  • [1] 程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld. 颗粒物质内自旋小球运动行为的数值模拟研究. 物理学报, 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [2] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [3] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [4] 李智峰, 彭政, 蒋亦民. 粮仓内颗粒压力的测量:Janssen行为及其偏差. 物理学报, 2014, 63(10): 104503. doi: 10.7498/aps.63.104503
    [5] 苏涛, 冯耀东, 赵宏武, 黄德财, 孙刚. 对颗粒物质运动的一致性进行控制的随机力场. 物理学报, 2013, 62(16): 164502. doi: 10.7498/aps.62.164502
    [6] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [7] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [8] 冯旭, 张国华, 孙其诚. 颗粒尺寸分散度对颗粒体系力学和几何结构特性的影响. 物理学报, 2013, 62(18): 184501. doi: 10.7498/aps.62.184501
    [9] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [10] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [11] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [12] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [13] 孙其诚, 金峰, 王光谦, 张国华. 二维颗粒体系单轴压缩形成的力链结构. 物理学报, 2010, 59(1): 30-37. doi: 10.7498/aps.59.30
    [14] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [15] 蒋亦民, 郑鹤鹏. 一种颗粒底部压力不趋向饱和的粮仓系统. 物理学报, 2008, 57(11): 7360-7366. doi: 10.7498/aps.57.7360
    [16] 郑鹤鹏, 蒋亦民. Couette颗粒系统中静态应力和侧压力系数的非线性弹性理论分析. 物理学报, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [17] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [19] 李 波, 鲍世宁, 庄友谊, 曹培林. 乙烯在Ni(110)表面吸附的几何结构. 物理学报, 2003, 52(1): 202-206. doi: 10.7498/aps.52.202
    [20] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
计量
  • 文章访问数:  5492
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-26
  • 修回日期:  2015-01-06
  • 刊出日期:  2015-07-05

/

返回文章
返回