搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重复频率可调谐的超低抖动光窄脉冲源的研究

贾石 于晋龙 王菊 王子雄 陈斌

引用本文:
Citation:

重复频率可调谐的超低抖动光窄脉冲源的研究

贾石, 于晋龙, 王菊, 王子雄, 陈斌

Research of optical short pulse source with tunable repetition rate and ultra-low timing jitter

Jia Shi, Yu Jin-Long, Wang Ju, Wang Zi-Xiong, Chen Bin
PDF
导出引用
  • 提出了一种新型的基于光电振荡器的重复频率可调谐的超低抖动光窄脉冲源. 光电振荡器系统可以产生超低相位噪声的微波信号; 被该信号调制的直调光经过两次相位调制之后, 使光脉冲的啁啾增强; 再通过一段色散补偿光纤, 光脉冲被进一步压窄. 实验中使用YIG可调滤波器, 可以得到812 GHz内步进为200 MHz的可调谐微波信号, 因此光脉冲的重复频率具有可调谐性. 当微波信号即脉冲重复频率为9.6 GHz时, 测得脉冲宽度为3.7 ps, 相位噪声为-130.1 dBc/Hz@10 kHz. 由此得出光脉冲的瞬时抖动为60.1 fs (100 Hz1 MHz), 因此该方案产生的光窄脉冲源具有超低的抖动.
    The highly stable optical short-pulse generator with high repetition rate is widely applied in many fields of optical communications, such as optical packet switching systems, high-speed analog-to-digital converter systems, wavelength division multiplexing networks, high-speed optical sampling systems and optical time division multiplexing networks. The optical short-pulse generator which is adopted in such systems mentioned above should possess high stability, low timing jitter, the tunability of the repetition-rate, and narrow pulse width. So far, most of the optical short pulses have been generated from the actively mode-locked lasers and the phase-modulated continuous wave lasers. However, both of the two methods require an additional microwave signal source. Consequently, the stability of such an optical short-pulse generator is strictly limited by the phase noise and stability of the additional microwave signal source. Since the concept of an optoelectronic oscillator which includes the generation of low noise optical pulses together with an ultra-low phase noise microwave signal was proposed by Yao in 1996, the optical short-pulse generator based on the optoelectronic oscillator has attracted much attention in recent years. According to this approach, Lasri demonstrated a novel, self-starting optoelectronic oscillator based on an electro-absorption modulator in a fiber-extended cavity for generating an optical pulse stream with high-rate and ultra-low jitter capabilities in 2003. In the scheme, the repetition rate of the generated optical pulses is 10 GHz, and the phase noise is-115 dBc/Hz at 10 kHz. Devgan demonstrated an optoelectronic oscillator by using a gain-switched vertical-cavity surface-emitting laser in a fiber-feedback configuration in 2006. The structure can generate a 2-GHz optical pulse stream with 750-fs timing jitter (over 100 Hz-10 MHz range). In the present paper, a novel optical short-pulse generator with tunable repetition rate and ultra-low timing jitter based on optoelectronic oscillator is demonstrated. The optoelectronic oscillator system can generate the microwave signal with ultra-low phase noise. The continuous wave light directly modulated by this microwave signal is phase modulated twice, and then the optical pulses with remarkable chirping rate are achieved. By optimizing the length of the dispersion compensating fiber, the optical pulses are further compressed. In this experiment, by utilizing a YIG tunable filter, the high-quality and tunable microwave signal within 8-12 GHz is achieved, which demonstrates the tunability of the repetition rate of the optical pulses. When the frequency of the microwave signal (i.e., the repetition rate of the optical pulses) is 9.6 GHz, the measured pulse width and the phase noise are 3.7 ps and-130.1 dBc/Hz at 10 kHz, respectively. Therefore, the timing jitter of the short optical pulse is calculated to be 60.1 fs (over 100 Hz to 1 MHz).
      通信作者: 王菊, wangju@tju.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB315704)和国家自然科学基金(批准号: 61427817, 61405142, 61205061) 资助的课题.
      Corresponding author: Wang Ju, wangju@tju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB315704) and the National Natural Science Foundation of China (Grant Nos. 61427817, 61405142, 61205061).
    [1]

    Nakazawa M, Yamamoto T, Tamura K R 2000 Electron. Lett. 36 2027

    [2]

    Li B, Lou S Q, Tan Z W, Su W 2012 Acta Phys. Sin. 61 194203(in Chinese) [李博, 娄淑琴, 谭中伟, 苏伟 2012 物理学报 61 194203]

    [3]

    Fok M P, Lee K L, Shu C 2004 IEEE Photon. Technol. Lett. 16 876

    [4]

    Dong X W, Liu W K 2013 Chin. Phys. B 22 024210

    [5]

    Clark T R, Caëruthers P J, Matthews, Duling L N 1999 Electron. Lett. 35 720

    [6]

    Takada A, Miazawa H 1990 Electron. Lett. 26 216

    [7]

    Suzuki M, Tanaka H, Edagawa N, Utaka K, Matsushima Y 1993 J. Lightwave Technol. 11 468

    [8]

    Ng W, Stephens R, Persechini D, Reddy K V 2001 Electron. Lett. 37 113

    [9]

    Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1275

    [10]

    Yao X S, Davis L, Maleki L 2000 J. Lightwave Technol. 18 73

    [11]

    Lasri J, Bilenca A, Dahan D, Sidorov V, Eisenstein G, Ritter D, Yvind K 2002 IEEE Photon. Technol. Lett. 14 1004

    [12]

    Lasri J, Devgan P, Tang R, Kumar P 2003 Opt. Express 11 1430

    [13]

    Devgan P, Serkland D, Gordon K, Geib K, Kumar P 2006 IEEE Photon. Technol. Lett. 18 685

    [14]

    Osinski M, Buus J 1987 IEEE J. Quantum. Electron. QE-23 9

    [15]

    Hu H, Yu J L, Zhang L T, Zhang A X, Li Y, Jiang Y, Yang E Z 2007 Opt. Express 15 8931

    [16]

    Jiang Y, Yu J L, Hu H, Wang W R, Wang Y T, Yang E Z 2007 Opt. Eng. 46 090502

  • [1]

    Nakazawa M, Yamamoto T, Tamura K R 2000 Electron. Lett. 36 2027

    [2]

    Li B, Lou S Q, Tan Z W, Su W 2012 Acta Phys. Sin. 61 194203(in Chinese) [李博, 娄淑琴, 谭中伟, 苏伟 2012 物理学报 61 194203]

    [3]

    Fok M P, Lee K L, Shu C 2004 IEEE Photon. Technol. Lett. 16 876

    [4]

    Dong X W, Liu W K 2013 Chin. Phys. B 22 024210

    [5]

    Clark T R, Caëruthers P J, Matthews, Duling L N 1999 Electron. Lett. 35 720

    [6]

    Takada A, Miazawa H 1990 Electron. Lett. 26 216

    [7]

    Suzuki M, Tanaka H, Edagawa N, Utaka K, Matsushima Y 1993 J. Lightwave Technol. 11 468

    [8]

    Ng W, Stephens R, Persechini D, Reddy K V 2001 Electron. Lett. 37 113

    [9]

    Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1275

    [10]

    Yao X S, Davis L, Maleki L 2000 J. Lightwave Technol. 18 73

    [11]

    Lasri J, Bilenca A, Dahan D, Sidorov V, Eisenstein G, Ritter D, Yvind K 2002 IEEE Photon. Technol. Lett. 14 1004

    [12]

    Lasri J, Devgan P, Tang R, Kumar P 2003 Opt. Express 11 1430

    [13]

    Devgan P, Serkland D, Gordon K, Geib K, Kumar P 2006 IEEE Photon. Technol. Lett. 18 685

    [14]

    Osinski M, Buus J 1987 IEEE J. Quantum. Electron. QE-23 9

    [15]

    Hu H, Yu J L, Zhang L T, Zhang A X, Li Y, Jiang Y, Yang E Z 2007 Opt. Express 15 8931

    [16]

    Jiang Y, Yu J L, Hu H, Wang W R, Wang Y T, Yang E Z 2007 Opt. Eng. 46 090502

  • [1] 郭晓庆, 王强, 薛海斌. 类场矩诱导的可调零场自旋转移力矩纳米振荡器. 物理学报, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [2] 郑立, 田文龙, 马骏逸, 于洋, 徐晓东, 韩海年, 魏志义, 朱江峰. GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器. 物理学报, 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [3] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收. 基于光学参量振荡器的可调谐红外激光的强度噪声特性. 物理学报, 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [4] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [5] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [6] 麻艳娜, 黄添添, 王文睿, 宋开臣. 基于双环混频光电振荡器的可调谐微波频率梳产生. 物理学报, 2018, 67(23): 238401. doi: 10.7498/aps.67.20181582
    [7] 黄港膑, 王菊, 王文睿, 贾石, 于晋龙. 一种基于串联谐振腔的高性能光电振荡器. 物理学报, 2016, 65(4): 044204. doi: 10.7498/aps.65.044204
    [8] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器. 物理学报, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [9] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [10] 吴穹, 于晋龙, 王菊, 王文睿, 贾石, 黄港膑, 黑克非, 李丽娟. 一种基于微波谐振测量Sagnac效应的新方案. 物理学报, 2015, 64(4): 044205. doi: 10.7498/aps.64.044205
    [11] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌. 基于波长双环路结构的新型光电振荡器的研究. 物理学报, 2015, 64(15): 154204. doi: 10.7498/aps.64.154204
    [12] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器. 物理学报, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [13] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [14] 李凯, 王安帮, 赵彤, 王云才. 光电振荡器产生宽带混沌光的时延特征分析. 物理学报, 2013, 62(14): 144207. doi: 10.7498/aps.62.144207
    [15] 刘丰, 李毅, 石俊凯, 胡晓堃, 李江, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月. GaP波导型发射器产生频率可调谐太赫兹脉冲. 物理学报, 2012, 61(3): 034210. doi: 10.7498/aps.61.034210
    [16] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究. 物理学报, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [17] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [18] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究. 物理学报, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [19] 李永民, 吴迎瑞, 张宽收, 彭墀. 利用准相位匹配光学参量振荡器获得可调谐强度差压缩光. 物理学报, 2003, 52(4): 849-852. doi: 10.7498/aps.52.849
    [20] 许鹏飞, 冯秉铨. 电子耦合振荡器之频率稳定性. 物理学报, 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
计量
  • 文章访问数:  4595
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-03
  • 修回日期:  2015-05-11
  • 刊出日期:  2015-09-05

/

返回文章
返回