搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生

罗香怡 贲帅 葛鑫磊 王群 郭静 刘学深

引用本文:
Citation:

空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生

罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深

High-order harmonics and attosecond pulse generation of a He+ ion by a chirped two-color inhomogeneous laser field

Luo Xiang-Yi, Ben Shuai, Ge Xin-Lei, Wang Qun, Guo Jing, Liu Xue-Shen
PDF
导出引用
  • 本文理论上研究了初态为基态与第一激发态等权叠加的一维氦离子在空间非均匀啁啾双色场驱动下氦离子的高次谐波发射及孤立阿秒脉冲的产生. 研究表明, 一维氦离子在空间非均匀啁啾双色场驱动下发射的高次谐波相对于均匀场情况截止位置得到明显扩展, 得到了光滑的超连续谱,并应用半经典三步模型解释了高次谐波发射的物理机理. 通过小波变换的方法对连续谱进行了时频分析, 并且与电子的经典运动轨迹进行了对比分析, 结果显示在空间非均匀场中长量子轨道消失, 短量子轨道加强. 讨论了空间非均匀啁啾双色场中时间延迟对谐波和孤立阿秒脉冲产生的影响, 发现适当调整时间延迟值可以得到较大延展的光滑的超连续谐波谱, 本方案中时间延迟为t0=1.6up/1时得到了最大延展, 通过对谐波中600次到680次(80次)谐波合成得到32 as的孤立脉冲.
    We theoretically study high-order harmonics generation (HHG) and isolated attosecond pulse (IAP) generation in a spatially inhomogeneous chirped two-color (5 fs/800 nm and 12 fs/1600 nm) laser field by solving numerically the time-dependent Schrdinger equation(TDSE) for a one-dimensional (1D) model of He+ ion by the splitting-operator fast-Fourier transform technique. Results show that the inhomogeneity of the laser field plays an important role in the HHG process. The harmonic spectra exhibit a two-plateau structure, and the cutoff of high-order harmonics is extremely extended to 851th order and the smooth supercontinuum harmonic spectrum is obtained in a chirped two-color inhomogeneous laser field. To further understand the physical mechanism of HHG, we give a reasonable explanation for the extension of harmonic plateau by using the semi-classical three-step model, the time-frequency profile of the time-dependent dipole, and the classical electron trajectories. Explicitly, the harmonic order as a function of the ionization time and emission time can be given by the semi-classical three-step model. If we define the path with earlier ionization time and later emission time as a ongelectronic trajectory, and the path with later ionization time and earlier emission time as a short electronic trajectory, then, there exist a few electronic trajectories that contribute to the harmonics in cutoff region. Numerical results show that the short quantum path is enhanced, and the long quantum path is suppressed in spatially inhomogeneous fields, and this is advantageous to generate an IAP. We find that the quantum path can be controlled by increasing inhomogeneity parameter of the laser field. Effects of the time delay on HHG is also discussed. We find that the smooth supercontinuum harmonic spectrum is obtained by adjusting the time delay. When the time delay is t0=1.6up/1, the cutoff of the harmonics can be extended remarkably. By synthesizing the 600th to 680th (80th) order harmonics in the continuum region, an isolated 32 attosecond pulse can be generated by a spatially inhomogeneous chirped two-color laser field with parameters =0.25, =0.00105, t0=1.6/1.
      Corresponding author: Guo Jing, gjing@jlu.edu.cn;liuxs@jlu.edu.cn ; Liu Xue-Shen, gjing@jlu.edu.cn;liuxs@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grand Nos. 11174108, 11104108, 11271158).
    [1]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [2]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, CorkumP B, Krausz F 2001 Science 291 1923

    [3]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [4]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [5]

    Lan P F, Lu P X, Li Q G, Li F, Hong W Y, Zhang Q B 2009 Phys. Rev. A 79 043413

    [6]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [7]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S De, Nisoli M 2006 Science 314 443

    [8]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [9]

    Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501

    [10]

    Xia C L, Liu X S 2012 Acta Phys. Sin. 61 043303(in Chinese) [夏昌龙, 刘学深 2012 物理学报 61 043303]

    [11]

    Chen G, Yang Y J, Guo F M 2013 Acta Phys. Sin. 62 073203(in Chinese) [陈高, 杨玉军, 郭福明 2013 物理学报 62 073203]

    [12]

    Wu J, Zhang G T, Xia C L, Liu X S 2010 Phys. Rev. A 82 013411

    [13]

    Li P C, Zhou X X, Wang G L, Zhao Z X 2009 Phys. Rev. A 80 053825

    [14]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [15]

    Ciappina M F, Biegert J, Quidant R, Lewenstein M 2012 Phys. Rev. A 85 033828

    [16]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201(in Chinese) [曾婷婷, 李鹏程, 周效信 2014 物理学报 63 203201]

    [17]

    Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201

    [18]

    Feit M D, Fleck J A, Jr, Steiger A 1982 J. Comput. Phys. 47 412

    [19]

    Antoine P, Piraux B, Maquet A 1995 Phys. Rev. A 51 1750

  • [1]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [2]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, CorkumP B, Krausz F 2001 Science 291 1923

    [3]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [4]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [5]

    Lan P F, Lu P X, Li Q G, Li F, Hong W Y, Zhang Q B 2009 Phys. Rev. A 79 043413

    [6]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [7]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S De, Nisoli M 2006 Science 314 443

    [8]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [9]

    Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501

    [10]

    Xia C L, Liu X S 2012 Acta Phys. Sin. 61 043303(in Chinese) [夏昌龙, 刘学深 2012 物理学报 61 043303]

    [11]

    Chen G, Yang Y J, Guo F M 2013 Acta Phys. Sin. 62 073203(in Chinese) [陈高, 杨玉军, 郭福明 2013 物理学报 62 073203]

    [12]

    Wu J, Zhang G T, Xia C L, Liu X S 2010 Phys. Rev. A 82 013411

    [13]

    Li P C, Zhou X X, Wang G L, Zhao Z X 2009 Phys. Rev. A 80 053825

    [14]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [15]

    Ciappina M F, Biegert J, Quidant R, Lewenstein M 2012 Phys. Rev. A 85 033828

    [16]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201(in Chinese) [曾婷婷, 李鹏程, 周效信 2014 物理学报 63 203201]

    [17]

    Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201

    [18]

    Feit M D, Fleck J A, Jr, Steiger A 1982 J. Comput. Phys. 47 412

    [19]

    Antoine P, Piraux B, Maquet A 1995 Phys. Rev. A 51 1750

  • [1] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [2] 杜进旭, 王国利, 李小勇, 周效信. 优化双色近红外激光及其二次谐波场驱动原子产生孤立阿秒脉冲. 物理学报, 2022, 71(23): 233207. doi: 10.7498/aps.71.20221375
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [5] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [6] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究. 物理学报, 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [7] 李小刚, 李芳, 何志聪. 双色场驱动下高次谐波的径向量子轨道干涉. 物理学报, 2013, 62(8): 087201. doi: 10.7498/aps.62.087201
    [8] 夏昌龙, 刘学深. 任意夹角的双色偏振激光作用下孤立阿秒脉冲的产生. 物理学报, 2012, 61(4): 043303. doi: 10.7498/aps.61.043303
    [9] 孟健, 陈高, 刘胜男. 多周期双色场方案下附加脉冲频率对阿秒脉冲产生的影响. 物理学报, 2012, 61(20): 203202. doi: 10.7498/aps.61.203202
    [10] 刘胜男, 陈高, 孟健. 60 fs长脉宽双色场作用下孤立阿秒脉冲的产生. 物理学报, 2012, 61(14): 143201. doi: 10.7498/aps.61.143201
    [11] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [12] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [13] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟. 物理学报, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [14] 刘硕, 陈高, 陈基根, 朱颀人. 采用双脉冲提高谐波谱的谱线密度. 物理学报, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [15] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [16] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟. 物理学报, 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [17] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
    [20] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究. 物理学报, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
计量
  • 文章访问数:  5321
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-17
  • 修回日期:  2015-04-27
  • 刊出日期:  2015-10-05

/

返回文章
返回