搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响

马立安 郑永安 魏朝晖 胡利勤 郭太良

引用本文:
Citation:

合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响

马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良

Effect of synthesis temperature and N2/O2 flow on morphology and field emission property of SnO2 nanowires

Ma Li-An, Zheng Yong-An, Wei Zhao-Hui, Hu Li-Qin, Guo Tai-Liang
PDF
导出引用
  • 采用化学气相沉积法系统研究了合成温度和N2/O2流量对生长在碳纤维衬底上的SnO2纳米线形貌及场发射性能的影响规律. 利用扫描电镜(SEM)、透射电镜(TEM), X射线衍射(XRD)及能谱仪(EDS)对产物细致表征, 结果表明, SnO2纳米线长径比随反应温度的升高而增大; 随N2/O2流量比值的增大先增大后变小, 场发射测试表明, 合成温度780 ℃, N2/O2流量比为300 : 3 时SnO2纳米线阵列具有最佳的场发射性能, 开启电场为1.03 V/m, 场强增加到1.68 V/m时, 发射电流密度达0.66 mA/cm2, 亮度约2300 cd/m2.
    A large amount of tin oxide (SnO2) nanowire arrays were synthesized on the flexible conductive carbon fiber substrate by thermal evaporation of tin powders in a tube furnace. The temperature, as well as the flow rate of the carrier N2 gas and the reaction O2 gas, plays an important role in defining the morphology of the SnO2 nanowires. Morphology and structure of the as-grown SnO2 samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Results show that all the samples possess a typical rutile structure, and no other impurity phases are observed. The morphology changes from rod to wire with the increase of reaction temperature. Ratio of length to diameter of the nanowires increases first and then decreases with the flow ratio of N2/O2 gas. The optimum synthesis conditions of SnO2 nanowire are: reaction temperature 780 ℃, N2 and O2 flow rates being 300 sccm and 3 sccm respectively. In our growth process, the nanowire grows mainly due to the vapor-liquid-solid (VLS) growth process, but both the VLS process and surface diffusion combined with a preferential growth mechanism play the important role in morphology evolution of the SnO2.Field emission measurements for Samples 1-6 are carried out in a vacuum chamber and a diode plate configuration is used. Relationship between the growth orientation, aspect ratio, density and uniformity of the arrays and field emission performances will be investigated first. Results reveal that the field emission performance of SnO2 nanostructures depends on their morphologies and array density. The turn-on electric field (at the current density of 10 upA/cm2) decreases and the emission site density increases with tin oxide array density, and the turn-on electric field of Sample 5 (synthesized at 780 ℃, nitrogen and oxygen flow rates being 300 sccm and 3 sccm respectively) is about 1.03 V/m at a working distance of 500 m. By comparison, for the turn-on electric fields of the not well-aligned SnO2 nanowire arrays we have 1.58, 2.13, 2.42, 1.82, and 1.97 V/m at 500 m. These behaviors indicate that such an ultralow turn-on field emission and marked enhancement in (~ 4670) can be attributed to the better orientation, the good electric contact with the conducting fiber substrate where they grow, and the weaker field-screening effect. Our results demonstrate that well-aligned nanowire arrays, with excellent field-emission performance, grown on fiber substrate can provide the possibility of application in flexible vacuum electron sources.
      通信作者: 马立安, mla728@hotmail.com
    • 基金项目: 福建省自然科学基金(批准号: 2012J01185)、福州大学场致发射显示教育部工程研究中心开放基金(批准号: KF1016)和福州市科技局项目(批准号: 2014-G-81)资助的课题.
      Corresponding author: Ma Li-An, mla728@hotmail.com
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2012J01185), Engineering Research Center of Field Emission Display Technology, Ministry of Education, China (Grant No. KF1016), and the Science and Technology Bureau of Fuzhou, China (Grant No. 2014-G-81).
    [1]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323

    [2]

    Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J, Milne W I 2005 Nature 437 968

    [3]

    Croci M, Arfaoui I, Stockli T, Chatelain A, Bonard J M 2004 Microelectron J. 35 329

    [4]

    Zhang J M, Du X J, Wang S F, Xu K W 2009 Chin. Phys. B 18 5468

    [5]

    Liu P, Wei Y, Liu K, Liu L, Jiang K L, Fan S S 2012 Nano Lett. 12 2391

    [6]

    Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102

    [7]

    Ghosh K, Kumar M, Wang H F, Maruyama T, Ando Y 2010 Langmuir 26 5527

    [8]

    Wang Z, Zuo Y L, Li Y, Han X M, Guo X B, Wang J B, Cao B, Xi L, Xue D S 2014 Carbon73 114

    [9]

    Wang J C 2013 Chin. Phys. B 22 068504

    [10]

    Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903

    [11]

    Li Z J, Li W D 2013 Acta Phys. Sin. 62 097902 (in Chinese) [李镇江, 李伟东 2013 物理学报] 62 097902

    [12]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv Funct Mater. 18 2411

    [13]

    Kim H, Cho 2008 J. Mater. Chem. 18 771

    [14]

    Wan Q, Huang J, Xie Z, Wang T H, Dattoli E N, Lu W 2008 Appl Phys Lett. 92 102101

    [15]

    Fang X S, Yan J, Hu L F, Liu H, Lee P S 2012 Adv. Funct. Mater. 22 1613

    [16]

    Zeng C L, Tang D S, Liu X H, Hai K, Yang Y, Yuan H J, Xie S S 2007 Acta Phys. Sin. 56 6531 (in Chinese) [曾春来, 唐东升, 刘星辉, 海阔, 羊亿, 袁华军, 解思深 2007 物理学报 56 6531]

    [17]

    Wang G X, Park J S, Park M S 2009 J Nanosci Nanotechnol. 9 1144

    [18]

    Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43

    [19]

    Wang Y L, Guo M, Zhang M, Wang X D 2009 Scripta Mater. 61 23

    [20]

    Qin L P, Xu J Q, Dong X W 2008 Nanotechnol. 19 1857051

    [21]

    Kong X H, Li Y D 2003 Chem. Lett. 32 100

    [22]

    Wang B, Yang Y H, Wang C X, Xu N S, Yang G Wet 2005 J. Appl. Phys. 98 1243031

    [23]

    Zhang Y S, Yu K, Li G D, Peng D Y, Zhang Q X, Xu F, Bai W, Ouyang S X, Zhu Z Q 2006 Mater Lett. 60 3109

    [24]

    Zhang Z, Wu S J, Yu T, Wu T 2007 J. Phys. Chem. C 111 17500

    [25]

    Ma L A, Guo T L 2013 Ceram.Int. 39 6923

    [26]

    Lilach Y, Zhang J P, Moskovits M, Kolmakov A 2005 Nano Lett. 5 2019

    [27]

    Chen Y J, Li Q H, Liang. Y X, Wang T H, Zhao Q X, Yu D P 2004 Appl. Phys.Lett. 85 5682

    [28]

    Luo S H, Chu P K, Di Z F, Zhang M, Liu W L, Lin C L, Fan J Y, Wu X L 2006 Appl. Phys. Lett. 88 013109

    [29]

    Deng KM, Lu H, Shi Z W, Liu Q, Li L 2013 ACS Appl. Mater. Interfaces 5 7845

    [30]

    Li X B, Wang X W, Shen Q, Zheng J, Liu W H, Zhao H, Yang F, Yang H Q 2013 ACS Appl. Mater. Interfaces 5 3033

    [31]

    Jo S H, Wang D Z, Huang J Y, Li W Z, Kempa K, Ren Z F 2004 Appl. Phys.Lett. 85 810

    [32]

    Wu Y Y, Yang P D 2001 J. Am. Chem. Soc. 123 3165

    [33]

    Lee S H, Jo G H, Park W, Lee S, Kim Y S, Cho B K, Lee T, Kim W B 2010 ACS Nano 4 1829

    [34]

    Sun S H, Meng G W, Zhang M G, An X H, Wu G S, Zhang L D 2004 J. Phys. D, Appl. Phys. 37 409

    [35]

    Jin C H, Wang J Y, Wang M S, Su J, Peng L M 2005 Carbon43 1026

    [36]

    Jo S H, Lao J Y, Ren Z F, Farrer R A, Baldacchini T, Fourkas J T 2003 Appl. Phys. Lett. 83 4821

    [37]

    Chavan P G, Badadhe S S, Mulla I S, More M A, Joag D S 2011 Nanoscale 3 1078

    [38]

    Ye Y, Chen T Y, Guo T L, Jiang Y D 2014 Acta Phys. Sin. 63 086802 (in Chinese) [叶芸, 陈填源, 郭太良, 蒋亚东 2014 物理学报 63 086802]

    [39]

    Xu N S, Huq S E 2005 Mater Sci Eng R Rep 48 47

    [40]

    de Heer WA, Chatelain A, Ugarte D 1995 Science 270 1179

    [41]

    Szuber J, Czempik G, Larciprete R, Adamowicz B 2000 Sens. Actuators. B Chem. 70 177

    [42]

    Wu J, Yu K, Li L J, Xu J W, Shang D J, Xu Y, Zhu Z Q 2008 J. Phys. D: Appl. Phys. 41 185302

    [43]

    Li J J, Chen M M, Tian S B, Jin A Z, Xia X X, Guo C Z 2011 Nanotechnol 22 505601

    [44]

    Ma L A, Guo T L 2009 Mater. Lett. 63 295

    [45]

    Wu J M 2008 Thin Solid Film 517 1289

    [46]

    Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43

  • [1]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323

    [2]

    Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J, Milne W I 2005 Nature 437 968

    [3]

    Croci M, Arfaoui I, Stockli T, Chatelain A, Bonard J M 2004 Microelectron J. 35 329

    [4]

    Zhang J M, Du X J, Wang S F, Xu K W 2009 Chin. Phys. B 18 5468

    [5]

    Liu P, Wei Y, Liu K, Liu L, Jiang K L, Fan S S 2012 Nano Lett. 12 2391

    [6]

    Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102

    [7]

    Ghosh K, Kumar M, Wang H F, Maruyama T, Ando Y 2010 Langmuir 26 5527

    [8]

    Wang Z, Zuo Y L, Li Y, Han X M, Guo X B, Wang J B, Cao B, Xi L, Xue D S 2014 Carbon73 114

    [9]

    Wang J C 2013 Chin. Phys. B 22 068504

    [10]

    Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903

    [11]

    Li Z J, Li W D 2013 Acta Phys. Sin. 62 097902 (in Chinese) [李镇江, 李伟东 2013 物理学报] 62 097902

    [12]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv Funct Mater. 18 2411

    [13]

    Kim H, Cho 2008 J. Mater. Chem. 18 771

    [14]

    Wan Q, Huang J, Xie Z, Wang T H, Dattoli E N, Lu W 2008 Appl Phys Lett. 92 102101

    [15]

    Fang X S, Yan J, Hu L F, Liu H, Lee P S 2012 Adv. Funct. Mater. 22 1613

    [16]

    Zeng C L, Tang D S, Liu X H, Hai K, Yang Y, Yuan H J, Xie S S 2007 Acta Phys. Sin. 56 6531 (in Chinese) [曾春来, 唐东升, 刘星辉, 海阔, 羊亿, 袁华军, 解思深 2007 物理学报 56 6531]

    [17]

    Wang G X, Park J S, Park M S 2009 J Nanosci Nanotechnol. 9 1144

    [18]

    Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43

    [19]

    Wang Y L, Guo M, Zhang M, Wang X D 2009 Scripta Mater. 61 23

    [20]

    Qin L P, Xu J Q, Dong X W 2008 Nanotechnol. 19 1857051

    [21]

    Kong X H, Li Y D 2003 Chem. Lett. 32 100

    [22]

    Wang B, Yang Y H, Wang C X, Xu N S, Yang G Wet 2005 J. Appl. Phys. 98 1243031

    [23]

    Zhang Y S, Yu K, Li G D, Peng D Y, Zhang Q X, Xu F, Bai W, Ouyang S X, Zhu Z Q 2006 Mater Lett. 60 3109

    [24]

    Zhang Z, Wu S J, Yu T, Wu T 2007 J. Phys. Chem. C 111 17500

    [25]

    Ma L A, Guo T L 2013 Ceram.Int. 39 6923

    [26]

    Lilach Y, Zhang J P, Moskovits M, Kolmakov A 2005 Nano Lett. 5 2019

    [27]

    Chen Y J, Li Q H, Liang. Y X, Wang T H, Zhao Q X, Yu D P 2004 Appl. Phys.Lett. 85 5682

    [28]

    Luo S H, Chu P K, Di Z F, Zhang M, Liu W L, Lin C L, Fan J Y, Wu X L 2006 Appl. Phys. Lett. 88 013109

    [29]

    Deng KM, Lu H, Shi Z W, Liu Q, Li L 2013 ACS Appl. Mater. Interfaces 5 7845

    [30]

    Li X B, Wang X W, Shen Q, Zheng J, Liu W H, Zhao H, Yang F, Yang H Q 2013 ACS Appl. Mater. Interfaces 5 3033

    [31]

    Jo S H, Wang D Z, Huang J Y, Li W Z, Kempa K, Ren Z F 2004 Appl. Phys.Lett. 85 810

    [32]

    Wu Y Y, Yang P D 2001 J. Am. Chem. Soc. 123 3165

    [33]

    Lee S H, Jo G H, Park W, Lee S, Kim Y S, Cho B K, Lee T, Kim W B 2010 ACS Nano 4 1829

    [34]

    Sun S H, Meng G W, Zhang M G, An X H, Wu G S, Zhang L D 2004 J. Phys. D, Appl. Phys. 37 409

    [35]

    Jin C H, Wang J Y, Wang M S, Su J, Peng L M 2005 Carbon43 1026

    [36]

    Jo S H, Lao J Y, Ren Z F, Farrer R A, Baldacchini T, Fourkas J T 2003 Appl. Phys. Lett. 83 4821

    [37]

    Chavan P G, Badadhe S S, Mulla I S, More M A, Joag D S 2011 Nanoscale 3 1078

    [38]

    Ye Y, Chen T Y, Guo T L, Jiang Y D 2014 Acta Phys. Sin. 63 086802 (in Chinese) [叶芸, 陈填源, 郭太良, 蒋亚东 2014 物理学报 63 086802]

    [39]

    Xu N S, Huq S E 2005 Mater Sci Eng R Rep 48 47

    [40]

    de Heer WA, Chatelain A, Ugarte D 1995 Science 270 1179

    [41]

    Szuber J, Czempik G, Larciprete R, Adamowicz B 2000 Sens. Actuators. B Chem. 70 177

    [42]

    Wu J, Yu K, Li L J, Xu J W, Shang D J, Xu Y, Zhu Z Q 2008 J. Phys. D: Appl. Phys. 41 185302

    [43]

    Li J J, Chen M M, Tian S B, Jin A Z, Xia X X, Guo C Z 2011 Nanotechnol 22 505601

    [44]

    Ma L A, Guo T L 2009 Mater. Lett. 63 295

    [45]

    Wu J M 2008 Thin Solid Film 517 1289

    [46]

    Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43

  • [1] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [2] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [3] 向飞, 吴平, 曾凡光, 王淦平, 李春霞, 鞠炳全. 强流碳纳米管阴极快脉冲重频发射特性. 物理学报, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [4] 王益军, 严诚. 不同电场下碳纳米管场致发射电流密度研究. 物理学报, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [5] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [6] 袁学松, 张宇, 孙利民, 黎晓云, 邓少芝, 许宁生, 鄢扬. 碳纳米管冷阴极脉冲发射特性及仿真模型研究. 物理学报, 2012, 61(21): 216101. doi: 10.7498/aps.61.216101
    [7] 潜力, 王昱权, 刘亮, 范守善. 碳纳米管在大气压环境中的场致发射特性. 物理学报, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [8] 潘金艳, 张文彦, 高云龙. 基于铟锡氧化物/Ti复合电极的高亮度碳纳米管场致发射冷阴极. 物理学报, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [9] 何春山, 王伟良, 陈桂华, 李志兵. 镜像势对碳纳米管阵列场发射特性的影响. 物理学报, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [10] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究. 物理学报, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [11] 覃华芳, 郭太良. 基于沉淀工艺制作四脚氧化锌纳米材料场致发射阴极的研究. 物理学报, 2008, 57(2): 1224-1228. doi: 10.7498/aps.57.1224
    [12] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [13] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] 林志贤, 郭太良, 胡利勤, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 四角状氧化锌纳米材料的场致发射平板显示器. 物理学报, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [15] 丁 佩, 晁明举, 梁二军, 郭新勇. 不同氮源制备CNx纳米管薄膜及其低场致电子发射性能. 物理学报, 2005, 54(12): 5926-5930. doi: 10.7498/aps.54.5926
    [16] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [17] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [18] 丁 佩, 晁明举, 梁二军, 郭新勇, 杜祖亮. CNx纳米管的制备、结构观察及低场致电子发射性能研究. 物理学报, 2004, 53(8): 2786-2791. doi: 10.7498/aps.53.2786
    [19] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  4376
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-23
  • 修回日期:  2015-08-18
  • 刊出日期:  2015-12-05

/

返回文章
返回