搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于(火积)理论的+形高导热构形通道实验研究

冯辉君 陈林根 谢志辉 孙丰瑞

引用本文:
Citation:

基于(火积)理论的+形高导热构形通道实验研究

冯辉君, 陈林根, 谢志辉, 孙丰瑞

Experimental study on + shaped high conductivity constructal channels based on entransy theory

Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui
PDF
导出引用
  • 基于构形理论和(火积)理论, 对+形高导热通道的方形构造体开展导热实验研究, 并对不同优化目标和不同高导热通道布置形式下的构造体导热性能进行比较. 结果表明: 对于+形高导热通道的方形构造体, 实验和数值计算所得到的构造体最高温度点均位于+形高导热通道两分支之间, 实验和数值计算所得到的构造体平均温差和(火积)耗散率的误差均在可接受范围内, 这从定性和定量的角度证明了导热构形优化结果的正确性. 与H形高导热通道的方形构造体相比, 构造体内高导热通道采用一级+形布置使得其导热(火积)耗散率得到降低. (火积)耗散率最小的一级+形高导热通道构造体最优构形与最大温差最小的构造体最优构形相比, 前者的导热(火积)耗散率降低了5.98%, 但最大温差提高了3.57%. 最大温差最小目标有助于提高构造体的热安全性, (火积)耗散率最小目标有助于提高构造体的整体导热性能. 在保证热安全性能的前提下, 实际微电子器件设计中可采用(火积)耗散率最小的构造体最优构形以提高其整体导热性能.
    Based on constructal theory and entransy theory, an experimental study on + shaped high conductivity channels in a square body is carried out. Heat conduction performance comparisons of the bodies based on different optimization objectives and different layouts of the high conductivity channels are performed. In the experiment, the materials of the square body and high conductivity channel are epoxy resin and brass, respectively; the brass channel is embedded in the square body. Two square heating boards, closed at the upper and lower sides of the square body, are used to uniformly heat itself. The internal heat generation of the square body is approximately simulated by this method. The square body is placed in a thermal insulation box to reduce the heat dissipation caused by heat convection. The heat generated by the heating boards is absorbed by the outside refrigerator device. A measurement window is set at the front side of the thermal insulation box. The temperature field of the square body is measured by the infrared thermal imager. The peak temperature, average temperature difference, and entransy dissipation rate of the body can be calculated by the measured results, respectively. Experimental results are compared to those obtained by numerical calculations; the results show that for the + shaped high conductivity channels in a square body, the maximum temperatures are located between the two branches of the + shaped high conductivity channels for both experimental result and numerical calculation. The errors in the average temperature and entransy dissipation rate of the body based on the experimental result and numerical calculations are within the acceptable range. The two results verify their validity of the heat conduction constructal optimization. Compared the square body with H shaped high conductivity channel, the entransy dissipation rate of the body caused by heat conduction is reduced by adopting the first order + shaped high conductivity channel. Compared with the optimal constructs of the first order + shaped high conductivity channels based on the minimizations of entransy dissipation rate and maximum temperature difference, the entransy dissipation rate caused by heat conduction of the former construct is reduced by 5.98%, but the maximum temperature difference is increased by 3.57%. The aim of maximum temperature difference minimization helps to improve the thermal safety of a body, while that of the entransy dissipation rate helps to improve the global heat conduction performance of a body. When the thermal safety is permitted, the optimal construct based on entransy dissipation rate minimization can be adopted in the design of practical electronic device to improve its global heat conduction performance.
      通信作者: 陈林根, lingenchen@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 51356001, 51176203, 51506220)资助的课题.
      Corresponding author: Chen Lin-Gen, lingenchen@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51356001, 51176203, 51506220).
    [1]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [2]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [3]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [4]

    Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301

    [5]

    Xie G N, Song Y D, Asadi M, Lorenzini G 2015 Trans. ASME, J. Heat Transfer 137 061901

    [6]

    Bejan A 2015 Trans. ASME, J. Heat Transfer 137 061003

    [7]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [8]

    Ghodoossi L, Egrican N 2003 J. Appl. Phys. 93 4922

    [9]

    Wu W J, Chen L G, Sun F R 2007 Appl. Energy 84 39

    [10]

    Wei S H, Chen L G, Sun F R 2009 Appl. Energy 86 1111

    [11]

    Lorenzini G, Biserni C, Rocha L A O 2013 Int. J. Heat Mass Transfer 58 513

    [12]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Int. J. Heat Mass Transfer 91 162

    [13]

    Ghodoossi S, Egrican N 2004 Energy Convers. Mgmt. 45 811

    [14]

    Chen L G, Wu W J, Sun F R 2014 Int. J. Low-Carbon Tech. 9 256

    [15]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 J. Energy Inst. doi: 10.1016/j. joei. 2015.01.016

    [16]

    Rocha L A O, Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 1643

    [17]

    Xiao Q H, Chen L G, Sun F R 2011 Int. J. Therm. Sci. 50 1031

    [18]

    Salimpour M R, Sharifi F, Menbari D 2013 Proc. Inst. Mech. Engng., Part E: J. Process Mech. Engng. 227 231

    [19]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 704

    [20]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [21]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论(北京: 科学出版社) 第 78-97 页]

    [22]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [23]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [24]

    Cheng X T, Liang X G 2013 J. Therm. Sci. Tech. 8 337

    [25]

    Cheng X T, Liang X G 2014 Chin. Sci. Bull., 59 5309

    [26]

    Chen L G 2014 Sci. China: Tech. Sci. 57 2305

    [27]

    Ji J, Liu T, Zhang X, Guo Z Y 2014 Sci. Found. China 6 446 (in Chinese) [纪军, 刘涛, 张兴, 过增元 2014 中国科学基金 6 446]

    [28]

    Zhu H Y 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [朱宏晔 2007 博士学位论文 (北京: 清华大学) ]

    [29]

    Wang S P, Chen Q L, Zhang B J 2009 Chin. Sci. Bull. 54 3572

    [30]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Acta Phys. Sin. 64 054402 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2015 物理学报 64 054402]

    [31]

    Tao Y B, He Y L, Liu Y K, Tao W Q 2014 Int. J. Heat Mass Transfer 77 695

    [32]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [33]

    Wang Y F, Chen Q 2015 Energy 85 609

    [34]

    Qian X D, Li Z, Li Z X 2015 Int. J. Heat Mass Transfer 81 252

    [35]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Acta Phys. Sin. 64 034701 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2015 物理学报 64 034701]

    [36]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [37]

    Cheng X T, Liang X G 2015 Int. J. Heat Mass Transfer 81 167

    [38]

    Wang W H, Cheng X T, Liang X G 2015 Int. J. Heat Mass Transfer 83 536

    [39]

    Cheng X T, Liang X G 2015 Chin. Phys. B 24 060510

    [40]

    Wu Y Q 2015 Chin. Phys. B 24 070506

    [41]

    Wei S H, Chen L G, Sun F R 2008 Sci. China Ser. E: Tech. Sci. 51 1283

    [42]

    Wei S H, Chen L G, Sun F R 2010 Thermal Sci. 14 1075

    [43]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 2400

    [44]

    Chen L G, Wei S H, Sun F R 2011 Int. J. Heat Mass Transfer 54 210

    [45]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [46]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sci. 55 779

    [47]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 J. Energy Inst. 88 188

    [48]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Int. J. Heat Mass Transfer 84 848

    [49]

    Feng H J 2014 Ph. D. Dissertation (Wuhan: Naval University of Engineering) (in Chinese) [冯辉君 2014 博士学位论文 (武汉: 海军工程大学)]

    [50]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 物理学报 62 134401]

    [51]

    da Silva A K, Bejan A 2006 Int. J. Therm. Sci. 45 860

    [52]

    Fan Z, Zhou X, Luo L, Yuan W 2008 Exp. Therm. Fluid Sci. 33 77

  • [1]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [2]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [3]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [4]

    Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301

    [5]

    Xie G N, Song Y D, Asadi M, Lorenzini G 2015 Trans. ASME, J. Heat Transfer 137 061901

    [6]

    Bejan A 2015 Trans. ASME, J. Heat Transfer 137 061003

    [7]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [8]

    Ghodoossi L, Egrican N 2003 J. Appl. Phys. 93 4922

    [9]

    Wu W J, Chen L G, Sun F R 2007 Appl. Energy 84 39

    [10]

    Wei S H, Chen L G, Sun F R 2009 Appl. Energy 86 1111

    [11]

    Lorenzini G, Biserni C, Rocha L A O 2013 Int. J. Heat Mass Transfer 58 513

    [12]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Int. J. Heat Mass Transfer 91 162

    [13]

    Ghodoossi S, Egrican N 2004 Energy Convers. Mgmt. 45 811

    [14]

    Chen L G, Wu W J, Sun F R 2014 Int. J. Low-Carbon Tech. 9 256

    [15]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 J. Energy Inst. doi: 10.1016/j. joei. 2015.01.016

    [16]

    Rocha L A O, Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 1643

    [17]

    Xiao Q H, Chen L G, Sun F R 2011 Int. J. Therm. Sci. 50 1031

    [18]

    Salimpour M R, Sharifi F, Menbari D 2013 Proc. Inst. Mech. Engng., Part E: J. Process Mech. Engng. 227 231

    [19]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 704

    [20]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [21]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论(北京: 科学出版社) 第 78-97 页]

    [22]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [23]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [24]

    Cheng X T, Liang X G 2013 J. Therm. Sci. Tech. 8 337

    [25]

    Cheng X T, Liang X G 2014 Chin. Sci. Bull., 59 5309

    [26]

    Chen L G 2014 Sci. China: Tech. Sci. 57 2305

    [27]

    Ji J, Liu T, Zhang X, Guo Z Y 2014 Sci. Found. China 6 446 (in Chinese) [纪军, 刘涛, 张兴, 过增元 2014 中国科学基金 6 446]

    [28]

    Zhu H Y 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [朱宏晔 2007 博士学位论文 (北京: 清华大学) ]

    [29]

    Wang S P, Chen Q L, Zhang B J 2009 Chin. Sci. Bull. 54 3572

    [30]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Acta Phys. Sin. 64 054402 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2015 物理学报 64 054402]

    [31]

    Tao Y B, He Y L, Liu Y K, Tao W Q 2014 Int. J. Heat Mass Transfer 77 695

    [32]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [33]

    Wang Y F, Chen Q 2015 Energy 85 609

    [34]

    Qian X D, Li Z, Li Z X 2015 Int. J. Heat Mass Transfer 81 252

    [35]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Acta Phys. Sin. 64 034701 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2015 物理学报 64 034701]

    [36]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [37]

    Cheng X T, Liang X G 2015 Int. J. Heat Mass Transfer 81 167

    [38]

    Wang W H, Cheng X T, Liang X G 2015 Int. J. Heat Mass Transfer 83 536

    [39]

    Cheng X T, Liang X G 2015 Chin. Phys. B 24 060510

    [40]

    Wu Y Q 2015 Chin. Phys. B 24 070506

    [41]

    Wei S H, Chen L G, Sun F R 2008 Sci. China Ser. E: Tech. Sci. 51 1283

    [42]

    Wei S H, Chen L G, Sun F R 2010 Thermal Sci. 14 1075

    [43]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 2400

    [44]

    Chen L G, Wei S H, Sun F R 2011 Int. J. Heat Mass Transfer 54 210

    [45]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [46]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sci. 55 779

    [47]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 J. Energy Inst. 88 188

    [48]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Int. J. Heat Mass Transfer 84 848

    [49]

    Feng H J 2014 Ph. D. Dissertation (Wuhan: Naval University of Engineering) (in Chinese) [冯辉君 2014 博士学位论文 (武汉: 海军工程大学)]

    [50]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 物理学报 62 134401]

    [51]

    da Silva A K, Bejan A 2006 Int. J. Therm. Sci. 45 860

    [52]

    Fan Z, Zhou X, Luo L, Yuan W 2008 Exp. Therm. Fluid Sci. 33 77

  • [1] 王奥, 盛宇飞, 鲍华. 金属导热理论的研究进展与前沿问题. 物理学报, 2024, 73(3): 037201. doi: 10.7498/aps.73.20231151
    [2] 胡敏丽, 房凡, 樊群超, 范志祥, 李会东, 付佳, 谢锋. NO+离子系统热力学性质的理论研究. 物理学报, 2023, 72(16): 165101. doi: 10.7498/aps.72.20230541
    [3] 全海涛, 董辉, 孙昌璞. 介观统计热力学理论与实验. 物理学报, 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [4] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究. 物理学报, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [5] 范航, 何冠松, 杨志剑, 聂福德, 陈鹏万. 三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究. 物理学报, 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [6] 王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞. 离散发热器件基于(火积)耗散率最小和最高温度最小的构形优化比较. 物理学报, 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [7] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的复杂肋片对流换热构形优化. 物理学报, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [8] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)理论的轧钢加热炉壁变截面绝热层构形优化. 物理学报, 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [9] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究. 物理学报, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [10] 程雪涛, 梁新刚. (火积)理论在热功转换过程中的应用探讨. 物理学报, 2014, 63(19): 190501. doi: 10.7498/aps.63.190501
    [11] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的“盘点”冷却流道构形优化. 物理学报, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [12] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化. 物理学报, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [13] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究. 物理学报, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [14] 王红艳, 段文山. 对含有非热力学平衡离子的尘埃等离子体中孤波特性的理论研究. 物理学报, 2007, 56(7): 3977-3983. doi: 10.7498/aps.56.3977
    [15] 宋海峰, 刘海风. 金属铍热力学性质的理论研究. 物理学报, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [16] 刘录新. 相对论热力学向量理论对Schwarzschild场中物质系统特性的研究. 物理学报, 1997, 46(12): 2300-2304. doi: 10.7498/aps.46.2300
    [17] 李富斌. 非平衡涨落问题的微观唯象分析理论(Ⅰ)——一种新的广义不可逆热力学理论与热涨落中涨落—耗散表示式的非平衡修正. 物理学报, 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
    [18] 徐继海. CeCu2Si2和UBe13的超导理论(Ⅱ)——热力学量的计算. 物理学报, 1988, 37(1): 111-118. doi: 10.7498/aps.37.111
    [19] 孟宪振, 蒲富恪. 热力学的推迟格临函数对铁磁共振峰宽理论的应用. 物理学报, 1961, 17(5): 214-221. doi: 10.7498/aps.17.214
    [20] 程开甲;李正中. 内耗的热力学研究_代位合金在有序或无序态的内耗理论. 物理学报, 1956, 12(4): 281-297. doi: 10.7498/aps.12.281
计量
  • 文章访问数:  6074
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-26
  • 修回日期:  2015-10-04
  • 刊出日期:  2016-01-20

/

返回文章
返回