搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝对探测大气温度的纯转动拉曼激光雷达系统

李仕春 王大龙 李启蒙 宋跃辉 刘丽娟 华灯鑫

引用本文:
Citation:

绝对探测大气温度的纯转动拉曼激光雷达系统

李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫

Pure rotational Raman lidar for absolute detection of atmospheric temperature

Li Shi-Chun, Wang Da-Long, Li Qi-Meng, Song Yue-Hui, Liu Li-Juan, Hua Deng-Xin
PDF
导出引用
  • 纯转动拉曼激光雷达是探测大气温度廓线的重要手段之一, 其正常工作需要配置其他并行校正设备, 制约其在气象及环境监测领域中的实用化进程. 基于大气氮气分子的纯转动拉曼谱型对温度的依赖性, 提出并设计了绝对探测大气温度廓线的纯转动拉曼激光雷达系统. 系统采用波长532 nm且脉冲能量300 mJ的激光激励源和口径250 mm卡塞格林望远镜的接收器, 设计了衍射光栅和光纤Bragg光栅结合的多通道并行纯转动拉曼光谱分光系统; 仿真分析氮气和氧气分子的纯转动拉曼散射谱线间关系, 优化选择了6条氮气分子的纯转动拉曼谱线以直接反演大气温度, 设计了两级滤光器间转接光纤阵列的结构; 基于最小二乘原理推导了绝对探测大气温度的反演算法, 并结合标准大气模型, 分析了纯转动拉曼激光雷达绝对探测大气温度的探测性能. 结果表明, 所设计纯转动拉曼激光雷达系统可直接反演大气温度廓线, 在测量时间17 min内, 温度偏差小于0.5 K的探测高度达2.0 km.
    A pure rotational Raman lidar has become one of valid methods of profiling atmospheric temperature. However, its proper operation generally needs a certain collocated device of atmospheric temperature to calibrate three retrieval coefficients. This fact seriously restricts the applications of pure rotational Raman lidar in the meteorology and environment fields. In order to execute the detection technique of atmospheric temperature without calibration, we present and design a pure rotational Raman lidar based on the dependence of atmosphere molecular rotational Raman spectral envelope on temperature. It is configured with a laser having a pulse energy of 300 mJ, a pulse repetition rate of 20 Hz, and a Cassegrain telescope with a clear aperture of 250 mm. A two-stage multi-channel pure rotational Raman spectroscopic filter is proposed to extract efficiently the rotational Raman spectral lines with more than 70 dB suppression to the elastic-scattering optical signals. It is configured with one blazed diffraction grating, one convex lens, one linear fiber array and seven groups of fiber Bragg gratings. The blazed diffraction grating and fiber Bragg grating are separately utilized as the primary and secondary spectroscope. The tailor-made fiber array, which is composd of ten single mode fibers of 460-HP type and one multi-mode fiber, is designed to transfer the spectral signals. One end face of multi-mode fiber lies in the focal point of telescope, and then it transfers the lidar echo signals to the pure rotational Raman spectroscopic filter. The other end face of multi-mode fiber lies in the focal point of convex lens. The ten single mode fibers are used to transfer the optical signals from the primary spectroscope to the secondary, and their end faces lie in the focal plane of convex lens. Six pure rotational Raman spectral lines of nitrogen molecule in the anti-Strokes branch are chosen under the condition of the 0.09-nm forbidden band, with the consideration of the relationship between the pure rotational Raman spectral lines of nitrogen and oxygen molecules. While the excited laser wavelength is 532 nm, their central wavelengths are 530.76 nm, 529.86 nm, 529.41 nm, 528.51 nm, 527.62 nm, and 527.17 nm, respectively. Their corresponding positions of fiber end faces on fiber array are 156 m, 407 m, 532 m, 782 m, 1031 m, and 1156 m. Compared with these pure rotational Raman spectral lines, the elastic scattering signal lies on the other side of the focal point of convex lens, which improves the spectral purity of pure rotational Raman spectral lines. A retrieval algorithm of absolute detection technique is presented based on the least square principle. The performance of this lidar is simulated based on the U. S. standard atmospheric model. Simulation results show that this designed lidar can achieve the extraction of the pure rotational Raman spectral lines of nitrogen molecules, and that the atmospheric temperature profile obtained from absolute retrieval algorithm within a measurement time of 17 min can be up to 2.0 km with less than 0.5-K deviation. This pure rotational Raman lidar without calibration will provide a new detection method and retrieval scheme for atmospheric temperature profile.
      通信作者: 华灯鑫, dengxinhua@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61308106,61275185)和陕西省自然科学基金(批准号:2013JM5001)资助的课题.
      Corresponding author: Hua Deng-Xin, dengxinhua@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61308106, 61275185) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM5001).
    [1]

    Jia J, Yi F 2014 Appl. Opt. 53 5330

    [2]

    Ren X Y, Tian Z S, Sun L J, Fu Y S 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209]

    [3]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 58 2294 (in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球物理学报 58 2294]

    [4]

    Tang L, Wang C R, Wu H B, Dong J H 2012 Chin. Phys. Lett. 29 014213

    [5]

    Wang H X, Liu J G, Zhang T S 2015 Chin. Phys. B 24 084213

    [6]

    Radlach M, Behrendt A, Wulfmeyer V 2008 Atmos. Chem. Phys. 8 159

    [7]

    Liu Z, Bi D, Song X, Xia J, Li R, Wang Z, She C 2009 Opt. Lett. 34 2712

    [8]

    Hua D, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063

    [9]

    Li S, Hua D, Hu L, Yan Q, Tian X 2014 Spectrosc. Lett. 47 244

    [10]

    Su J, Patrick McCormick M, Wu Y, Lee Iii R B, Lei L, Liu Z, Leavor K R 2013 J. Quant. Spectrosc. Radiat. 125 45

    [11]

    Wang Y, Cao X, He T, Gao F, Hua D, Zhao M 2015 Appl. Opt. 54 10079

    [12]

    Zeyn J, Lahmann W, Weitkamp C 1996 Opt. Lett. 21 1301

    [13]

    Li S, Hua D, Wang Y, Gao F, Yan Q, Shi X 2015 J. Quant. Spectrosc. Radiat. 153 113

    [14]

    Norton E G, Povey I M, South A M, Jones R L 2001 Proc. SPIE 4153 657

    [15]

    Arshinov Y, Bobrovnikov S, Serikov I, Ansmann A, Wandinger U, Althausen D, Mattis I, Muller D 2005 Appl. Opt. 44 3593

    [16]

    Li S C, Hua D X, Song Y H, Tian X Y 2012 Acta Phtonica Sin. 41 1053 (in Chinese) [李仕春, 华灯鑫, 宋跃辉, 田小雨 2012 光子学报 41 1053]

    [17]

    Li S C, Hua D X, Wang L, Song Y H 2013 Optik 124 1450

  • [1]

    Jia J, Yi F 2014 Appl. Opt. 53 5330

    [2]

    Ren X Y, Tian Z S, Sun L J, Fu Y S 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209]

    [3]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 58 2294 (in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球物理学报 58 2294]

    [4]

    Tang L, Wang C R, Wu H B, Dong J H 2012 Chin. Phys. Lett. 29 014213

    [5]

    Wang H X, Liu J G, Zhang T S 2015 Chin. Phys. B 24 084213

    [6]

    Radlach M, Behrendt A, Wulfmeyer V 2008 Atmos. Chem. Phys. 8 159

    [7]

    Liu Z, Bi D, Song X, Xia J, Li R, Wang Z, She C 2009 Opt. Lett. 34 2712

    [8]

    Hua D, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063

    [9]

    Li S, Hua D, Hu L, Yan Q, Tian X 2014 Spectrosc. Lett. 47 244

    [10]

    Su J, Patrick McCormick M, Wu Y, Lee Iii R B, Lei L, Liu Z, Leavor K R 2013 J. Quant. Spectrosc. Radiat. 125 45

    [11]

    Wang Y, Cao X, He T, Gao F, Hua D, Zhao M 2015 Appl. Opt. 54 10079

    [12]

    Zeyn J, Lahmann W, Weitkamp C 1996 Opt. Lett. 21 1301

    [13]

    Li S, Hua D, Wang Y, Gao F, Yan Q, Shi X 2015 J. Quant. Spectrosc. Radiat. 153 113

    [14]

    Norton E G, Povey I M, South A M, Jones R L 2001 Proc. SPIE 4153 657

    [15]

    Arshinov Y, Bobrovnikov S, Serikov I, Ansmann A, Wandinger U, Althausen D, Mattis I, Muller D 2005 Appl. Opt. 44 3593

    [16]

    Li S C, Hua D X, Song Y H, Tian X Y 2012 Acta Phtonica Sin. 41 1053 (in Chinese) [李仕春, 华灯鑫, 宋跃辉, 田小雨 2012 光子学报 41 1053]

    [17]

    Li S C, Hua D X, Wang L, Song Y H 2013 Optik 124 1450

  • [1] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [2] 李启蒙, 李仕春, 秦宇丽, 胡向龙, 赵静, 宋跃辉, 华灯鑫. 绝对测温转动拉曼激光雷达分光系统设计 及性能. 物理学报, 2018, 67(1): 014207. doi: 10.7498/aps.67.20171834
    [3] 王玉峰, 张晶, 汤柳, 王晴, 高天乐, 宋跃辉, 狄慧鸽, 李博, 华灯鑫. 基于拉曼激光雷达的大气三相态水同步精细探测分光系统的设计与仿真分析. 物理学报, 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [4] 王骏, 崔萌, 陆红, 汪丽, 闫庆, 刘晶晶, 华灯鑫. 基于固体腔扫描法布里-珀罗干涉仪的大气温度绝对探测方法研究. 物理学报, 2017, 66(8): 089202. doi: 10.7498/aps.66.089202
    [5] 万秀美, 陈晨, 范智博, 逯丹凤, 高然, 祁志美. 基于介孔TiO2薄膜等离子体波导的拉曼光谱技术研究. 物理学报, 2016, 65(13): 137801. doi: 10.7498/aps.65.137801
    [6] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [7] 巩鑫, 华灯鑫, 李仕春, 王骏, 石晓菁. 基于取样光纤布拉格光栅的全光纤拉曼测温分光系统设计及优化. 物理学报, 2016, 65(7): 073601. doi: 10.7498/aps.65.073601
    [8] 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁. 基于回音壁微腔拉曼激光的纳米粒子探测. 物理学报, 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [9] 葛烨, 舒嵘, 胡以华, 刘豪. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真. 物理学报, 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [10] 青海银, 张援农, 周晨, 赵正予, 陈罡. 基于MST雷达垂直风速的大气温度剖面反演. 物理学报, 2014, 63(9): 094301. doi: 10.7498/aps.63.094301
    [11] 王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎. 水汽探测拉曼激光雷达的新型光谱分光系统设计与分析. 物理学报, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [12] 张洪玉, 张韶华, 梁鹤, 刘宇宏, 雒建斌. 纳米级润滑膜分子排列取向的拉曼光谱表征技术. 物理学报, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [13] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [14] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差. 物理学报, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [15] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [16] 房振乾, 胡 明, 张 伟, 张绪瑞. 基于微拉曼光谱技术的氧化介孔硅热导率研究. 物理学报, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [17] 汪少林, 苏 嘉, 赵培涛, 曹开法, 胡顺星, 魏合理, 谭 锟, 胡欢陵. 基于三级Fabry-Perot标准具的纯转动拉曼测温激光雷达. 物理学报, 2008, 57(6): 3941-3947. doi: 10.7498/aps.57.3941
    [18] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [19] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [20] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
计量
  • 文章访问数:  5827
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-19
  • 修回日期:  2016-05-04
  • 刊出日期:  2016-07-05

/

返回文章
返回