搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于介孔TiO2薄膜等离子体波导的拉曼光谱技术研究

万秀美 陈晨 范智博 逯丹凤 高然 祁志美

引用本文:
Citation:

基于介孔TiO2薄膜等离子体波导的拉曼光谱技术研究

万秀美, 陈晨, 范智博, 逯丹凤, 高然, 祁志美

Raman spectroscopy based on plasmon waveguide prepared with mesoporous TiO2 thin film

Wan Xiu-Mei, Chen Chen, Fan Zhi-Bo, Lu Dan-Feng, Gao Ran, Qi Zhi-Mei
PDF
导出引用
  • 利用溶胶-凝胶分子模板法在表面覆金的玻璃基底上制备275 nm厚的介孔二氧化钛 (TiO2) 薄膜, 形成等离子体波导(PW)传感芯片. 利用菲涅耳公式拟合实验测得的导模共振波长, 得出TiO2薄膜的多孔度约为0.589. 基于光学互易定理仿真分析了置于介孔导波层中的电偶极子的拉曼辐射角分布, 结果表明辐射到衬底中的拉曼光包含沿导模共振角辐射的定向信号和辐射角小于全反射角的非定向信号; 前者需借助棱镜耦合器才能被探测到, 后者可从芯片背面直接被探测到; 从导波层直接辐射到空气中的拉曼光称为背向信号, 它的角分布呈发散式, 几乎不受棱镜耦合器影响; 定向信号的最大功率值远大于非定向信号和背向信号的相应值; 实验研究了吸附于介孔导波层中的结晶紫分子的拉曼光谱, 采用体光束激发方式探测到了定向、非定向和背向拉曼信号, 定向信号强度的最大值是非定向信号的2倍多, 在使用棱镜耦合器前后测得的背向信号强度几乎不变.
    Gold film (40-nm-thick) sputtered on the glass substrate was decorated by using the sol-gel copolymer templated mesoporous TiO2 thin film (275-nm-thick) to fabricate the plasmon waveguide (PW). The Raman spectroscopy based on the Au/TiO2 PW is studied theoretically and experimentally. The surface morphology of the mesoprous TiO2 thin film and the cross-section of the PW chip are obtained by scanning electron microscopy (SEM) and the porosity (P) of mesoporous TiO2 thin film is determined to be about 0.589 by fitting the calculated waveguide coupling dips to the measured resonance wavelengths based on Fresnel equations. The angular distributions of Raman power from the molecular dipole located in the core layer of the waveguide are theoretically investigated based on the optical reciprocity theorem. The calculated results suggest that the Raman light radiated into the substrate consists of the directional Raman signal propagating at the resonant angle and the non-directional Raman signal whose radiation angles are smaller than the critical angle of total reflection. The directional Raman signal could be detected with the aid of the prism coupler, while the non-directional Raman signal can be detected directly on the back of the sensor chip. Furthermore, the angular distribution of the backscattered Raman signal is divergent and it is unaffected by the use of the prism coupler. The highest power of the directional Raman signal is much larger than that of the non-directional Raman signal and the backscattered Raman signal. The Raman spectroscopy based on the PW is studied by experiment with CV molecules adsorbed into the mesoporous TiO2 thin film. The Raman spectrum is obtained with the 532 nm laser radiating directly onto the waveguide surface. The experimental results show that the Raman signal including the directional Raman signal, non-directional Raman signal and the backscattered Raman signal can be detected with the PW chip. Besides, the directional Raman signal can only be detected by using the prism coupler, while the non-directional Raman signal can be detected directly on the back of the chip. Then the results also show that the peak intensity of the directional Raman signal is twice higher than that of the non-directional Raman signal. The further measurements reveal that the backscattered Raman signal hardly changes under the condition with or without the prism coupler. The experimental results mentioned above are in accordance with the theoretical calculations. The Raman spectroscopy based on PW in this work has potential value in further developing the Raman sensing technique.
      通信作者: 祁志美, zhimei-qi@mail.ie.ac.cn
    • 基金项目: 国家重点基础研究发展规划(批准号: 2015CB352100)、国家自然科学基金(批准号: 61401432)、中国科学院科研装备研制项目(批准号: YZ201508)和国民核生化灾害防护国家重点实验室开放基金(批准号: SKLNBC2014-11)资助的课题.
      Corresponding author: Qi Zhi-Mei, zhimei-qi@mail.ie.ac.cn
    • Funds: Project supported by the National Key Basic Research Program of China (Grant No. 2015CB352100), the National Natural Science Foundation of China (Grant No. 61401432), the Research Equipment Development Project of Chinese Academy of Sciences (Grant No. YZ201508), and the State Key Laboratory of NBC Protection for Civilian, China (Grant No. SKLNBC2014-11).
    [1]

    Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y 1997 Anal. Chem. 69 1492

    [2]

    Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D 2003 Anal. Chem. 75 5936

    [3]

    Ni J, Lipert R J, Dawson G B, Porter M D 1999 Anal. Chem. 71 4903

    [4]

    Zhang J, Li H T, Liao F, Guo J H, Hu F R 2015 Chin. Phys. Lett. 32 126801

    [5]

    Cai Q, Lu S K, Liao F, Li Y Q, Ma S Z, Shao M W 2014 Nanoscale 6 8117

    [6]

    Liu D L, Zhao Q, Lu D F, Qi Z M 2014 Chem. J. Chin. Univ. 35 2207 (in Chinese) [刘德龙, 赵乔, 逯丹凤, 祁志美 2014 高等学校化学学报 35 2207]

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    He L L, Rodda T, Haynes C L, Deschaines T, Strother T, Diez-Gonzalez F, Labuza T P 2011 Anal. Chem. 83 1510

    [9]

    Wei H, Xu H X 2013 Nanoscale 5 10794

    [10]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [11]

    Jung H, Park M, Kang M, Jeong K H 2016 Light Sci. Appl. 5 doi:10.1038/lsa.2016.9

    [12]

    Huang Y Z, Fang Y R, Zhang Z L, Zhu L, Sun M T 2014 Light Sci. Appl. 3 doi:10.1038/lsa.2014.80

    [13]

    Zhao Q, Lu D F, Liu D L, Chen C, Hu D B, Qi Z M 2014 Acta Phys. -Chim. Sin. 30 1201 (in Chinese) [赵 乔, 逯丹凤, 刘德龙, 陈 晨, 胡德波, 祁志美 2014 物理化学学报 30 1201]

    [14]

    Tian Z Q, Ren B, Mao B W 1997 J. Phys. Chem. 101 1338

    [15]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [16]

    Ru E C L, Etchegoin P G 2006 Chem. Phys. Lett. 423 63

    [17]

    Ding S Y, Wu D Y, Yang Z L, Ren B, Xu X, Tian Z Q 2008 Chem. J. Chin. Univ. 29 2569 (in Chinese) [丁松园, 吴德印, 杨志林, 任斌, 徐昕, 田中群 2008 高等学校化学学报 29 2569]

    [18]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801 (in Chinese) [汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 物理学报 63 107801]

    [19]

    Kanger J S, Otto C 2003 Appl. Spectrosc. 57 1487

    [20]

    McKee K J, Meyer M W, Smith E A 2012 Anal. Chem. 84 9049

    [21]

    Meyer M W, McKee K J, Nguyen V H T, Smith E A 2012 J. Phys. Chem. C 116 24987

    [22]

    Fu C C, Gu Y J, Wu Z Y, Wang Y Y, Xu S P, Xu W Q 2014 Sens. Actuators B: Chem. 201 173

    [23]

    Chen C, Li J Y, Wang L, Lu D F, Qi Z M 2015 Phys. Chem. Chem. Phys. 17 21278

    [24]

    Qi Z M, Honma I, Zhou H S 2006 Anal. Chem. 78 1034

    [25]

    Alberius P C A, Frindell K L, Hayward R C, Kramer E J, Stucky G D, Chmelka B F 2002 Chem. Mater. 14 3284

    [26]

    Zhang Z, Lu D F, Qi Z M 2012 J. Phys. Chem. C 116 3342

    [27]

    Huo S X, Liu Q, Cao S H, Cai W P, Meng L Y, Xie K X, Zhai Y Y, Zong C, Yang Z L, Ren B, Li Y Q 2015 J. Phys. Chem. Lett. 6 2015

  • [1]

    Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y 1997 Anal. Chem. 69 1492

    [2]

    Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D 2003 Anal. Chem. 75 5936

    [3]

    Ni J, Lipert R J, Dawson G B, Porter M D 1999 Anal. Chem. 71 4903

    [4]

    Zhang J, Li H T, Liao F, Guo J H, Hu F R 2015 Chin. Phys. Lett. 32 126801

    [5]

    Cai Q, Lu S K, Liao F, Li Y Q, Ma S Z, Shao M W 2014 Nanoscale 6 8117

    [6]

    Liu D L, Zhao Q, Lu D F, Qi Z M 2014 Chem. J. Chin. Univ. 35 2207 (in Chinese) [刘德龙, 赵乔, 逯丹凤, 祁志美 2014 高等学校化学学报 35 2207]

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    He L L, Rodda T, Haynes C L, Deschaines T, Strother T, Diez-Gonzalez F, Labuza T P 2011 Anal. Chem. 83 1510

    [9]

    Wei H, Xu H X 2013 Nanoscale 5 10794

    [10]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [11]

    Jung H, Park M, Kang M, Jeong K H 2016 Light Sci. Appl. 5 doi:10.1038/lsa.2016.9

    [12]

    Huang Y Z, Fang Y R, Zhang Z L, Zhu L, Sun M T 2014 Light Sci. Appl. 3 doi:10.1038/lsa.2014.80

    [13]

    Zhao Q, Lu D F, Liu D L, Chen C, Hu D B, Qi Z M 2014 Acta Phys. -Chim. Sin. 30 1201 (in Chinese) [赵 乔, 逯丹凤, 刘德龙, 陈 晨, 胡德波, 祁志美 2014 物理化学学报 30 1201]

    [14]

    Tian Z Q, Ren B, Mao B W 1997 J. Phys. Chem. 101 1338

    [15]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [16]

    Ru E C L, Etchegoin P G 2006 Chem. Phys. Lett. 423 63

    [17]

    Ding S Y, Wu D Y, Yang Z L, Ren B, Xu X, Tian Z Q 2008 Chem. J. Chin. Univ. 29 2569 (in Chinese) [丁松园, 吴德印, 杨志林, 任斌, 徐昕, 田中群 2008 高等学校化学学报 29 2569]

    [18]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801 (in Chinese) [汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 物理学报 63 107801]

    [19]

    Kanger J S, Otto C 2003 Appl. Spectrosc. 57 1487

    [20]

    McKee K J, Meyer M W, Smith E A 2012 Anal. Chem. 84 9049

    [21]

    Meyer M W, McKee K J, Nguyen V H T, Smith E A 2012 J. Phys. Chem. C 116 24987

    [22]

    Fu C C, Gu Y J, Wu Z Y, Wang Y Y, Xu S P, Xu W Q 2014 Sens. Actuators B: Chem. 201 173

    [23]

    Chen C, Li J Y, Wang L, Lu D F, Qi Z M 2015 Phys. Chem. Chem. Phys. 17 21278

    [24]

    Qi Z M, Honma I, Zhou H S 2006 Anal. Chem. 78 1034

    [25]

    Alberius P C A, Frindell K L, Hayward R C, Kramer E J, Stucky G D, Chmelka B F 2002 Chem. Mater. 14 3284

    [26]

    Zhang Z, Lu D F, Qi Z M 2012 J. Phys. Chem. C 116 3342

    [27]

    Huo S X, Liu Q, Cao S H, Cai W P, Meng L Y, Xie K X, Zhai Y Y, Zong C, Yang Z L, Ren B, Li Y Q 2015 J. Phys. Chem. Lett. 6 2015

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量. 物理学报, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器. 物理学报, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [3] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制. 物理学报, 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [4] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [5] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [6] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合. 物理学报, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [7] 张智猛, 张博, 吴凤娟, 洪伟, 滕建, 贺书凯, 谷渝秋. 等离子体密度对激光拉曼放大机理的影响. 物理学报, 2015, 64(10): 105201. doi: 10.7498/aps.64.105201
    [8] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. N离子注入富氧ZnO薄膜的p型导电及拉曼特性研究. 物理学报, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [9] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [10] 邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟. ZnO:Sb薄膜的光致发光及拉曼特性研究. 物理学报, 2012, 61(24): 247701. doi: 10.7498/aps.61.247701
    [11] 杨昌虎, 马忠权, 徐飞, 赵磊, 李凤, 何波. 稀土钇、镧掺杂TiO2薄膜的拉曼谱分析. 物理学报, 2010, 59(9): 6549-6555. doi: 10.7498/aps.59.6549
    [12] 臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [13] 周文平, 万松明, 殷绍唐, 张庆礼, 尤静林, 王媛媛. KTN晶体及其熔体结构的高温拉曼光谱研究. 物理学报, 2009, 58(1): 570-574. doi: 10.7498/aps.58.570
    [14] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [15] 房振乾, 胡 明, 张 伟, 张绪瑞. 基于微拉曼光谱技术的氧化介孔硅热导率研究. 物理学报, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [16] 曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈 静, 沈文忠. 分子束外延PbTe单晶薄膜的反常拉曼光谱研究. 物理学报, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [17] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] 江美福, 宁兆元. 氟化类金刚石薄膜的拉曼和红外光谱结构研究. 物理学报, 2004, 53(5): 1588-1593. doi: 10.7498/aps.53.1588
    [19] 张立辉, 李高翔, 彭金生. 位相损耗腔中简并双光子拉曼耦合系统中的熵特性. 物理学报, 2002, 51(3): 541-546. doi: 10.7498/aps.51.541
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
计量
  • 文章访问数:  5294
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-17
  • 修回日期:  2016-04-18
  • 刊出日期:  2016-07-05

/

返回文章
返回