搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝对测温转动拉曼激光雷达分光系统设计 及性能

李启蒙 李仕春 秦宇丽 胡向龙 赵静 宋跃辉 华灯鑫

引用本文:
Citation:

绝对测温转动拉曼激光雷达分光系统设计 及性能

李启蒙, 李仕春, 秦宇丽, 胡向龙, 赵静, 宋跃辉, 华灯鑫

Design and performance of spectroscopic filter of rotational Raman temperature lidar for absolute measurement

Li Qi-Meng, Li Shi-Chun, Qin Yu-Li, Hu Xiang-Long, Zhao Jing, Song Yue-Hui, Hua Deng-Xin
PDF
导出引用
  • 为实现转动拉曼激光雷达的绝对测量温度技术,设计并测试了多通道转动拉曼分光系统.提出了一阶闪耀光栅与光纤Bragg光栅组成的两级并行多通道拉曼分光系统,优化了其核心级联器件(微米级光纤阵列)的参数及光路结构;仿真分析了一级分光系统的分光光路,转动拉曼谱线最大离心伸缩量约为0.0031 nm,离心伸缩比为0.69%;实验测试表明一级分光系统各转动拉曼通道的通道系数均在0.75以上,提取到拉曼光谱的实测中心波长与理论值的最大偏差约为0.0398 nm,偏离度为8.86%,可提供对弹性散射信号27 dB以上的有效抑制,结合已有光纤Bragg光栅二级分光实现高达62 dB弹性散射的抑制效果,可以实现对单条偶转动量子数转动拉曼谱线的精细光谱提取.
    Rotational Raman temperature lidar for absolute measurement is an important method to directly detect the atmospheric temperature profile by using active remote sensing technology. Compared with the rotational Raman temperature relative measurement, the absolute measurement can avoid the systematic error caused by the calibration process, but its high-precision requirements of rotational Raman spectroscopic filter restrict the development of absolute measurement technique for atmosphere temperature. In order to achieve the absolute measurement technique of rotational Raman temperature lidar, the fine resolution of single rotational Raman line and the effective suppression 60-70 dB for the elastic scattering signal are the key factors for directly retrieving the atmospheric temperature by using the relationship between the single rotational Raman line and temperature. Based on the operational principle of grating, a two-stage parallel multi-channel Raman spectroscopic filter with one-order blazed grating and fiber Bragg grating is designed, and the parameters and optical path structure of the core cascade device (micron-level fiber array) are optimized. The optical path of the primary spectroscope is simulated, the wavelength difference between the rotational Raman lines of adjacent even rotational quantum numbers of nitrogen molecule (N2) gradually decreases from 0.4506 nm to 0.4475 nm. Compared with the average of approximately 0.4494 nm, its floating interval is -0.0012-+0.0019 nm, and the maximum centrifugal distortion of the rotational Raman spectra is approximately 0.0031 nm, which means that the centrifugal distortion ratio is 0.69%. Under the different values of incident angle , the diffraction position difference between adjacent rotational Raman lines varies from 124.43 m to 125.51 m, with a variation interval of -0.57-+0.51 m compared with a fixed value of 125 m. In order to test the matching consistency between rotational Raman spectra and the multi-channel fiber array, and to obtain the out-of-band suppression and channel coefficient of each fiber channel, an experimental system which consists of a first-order blazed grating, a convex lens and a fiber array is set up, and the atmospheric echo signal is simulated by using a broadband light-source and a semiconductor laser (LD). The experimental results show that the channel coefficient of the rotational Raman channels of the primary spectroscope is above 0.75, and the maximum deviation between the measured wavelength of extracted spectrum and the theoretical value is approximately 0.0398 nm, which means the the deviation degree is 8.86%. Each channel can provide more than 27 dB effective suppression to elastic scattering signal, and then by combining with the second spectroscope of fiber Bragg grating, the suppression at least is up to 62 dB. Therefore we can fine extract single rotational Raman line of even rotational quantum number.
      通信作者: 李仕春, lsczqz@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61308106,41627807)资助的课题.
      Corresponding author: Li Shi-Chun, lsczqz@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61308106, 41627807).
    [1]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 58 313(in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球物理学报 58 313]

    [2]

    Yang J, Liu Q Q, Dai W, Mao X L, Zhang J H, Li M 2016 Acta Phys. Sin. 65 094209(in Chinese) [杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏 2016 物理学报 65 094209]

    [3]

    Cooney J 1972 J. Apll. Meteorol. 11 108

    [4]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305

    [5]

    Shi J L, Guo P F, Huang Y, Qian J C, Wang H P, Liu J, He X D 2015 Acta Phys. Sin. 64 024215(in Chinese) [史久林, 郭鹏峰, 黄育, 钱佳成, 王泓鹏, 刘娟, 何兴道 2015 物理学报 64 024215]

    [6]

    Hua D X, Song X Q 2008 Infrar. Laser Eng. 38 21(in Chinese) [华灯鑫, 宋小全 2008 红外与激光工程 38 21]

    [7]

    Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244

    [8]

    Arshinov Y, Bobrovnikov S, Serikov I, Ansmann A, Wandinger U, Althausen D, Mattis I, Mller D 2005 Appl. Opt. 44 3593

    [9]

    Balin I, Serikov I, Bobrovnikov S, Simeonov V, Calpini B, Arshinov Y, van den Bergh H 2004 Appl. Phys.. 9 775

    [10]

    Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304

    [11]

    Su J, Zhang Y C, Zhao Y F, Liu Y L, Hong G L, Zhao P T, Qu K F, Xie J 2007 Chin. J. Lasers 34 94(in Chinese) [苏嘉, 张寅超, 赵曰峰, 刘玉丽, 洪光烈, 赵培涛, 屈凯峰, 谢军 2007 红外与激光工程 34 94]

    [12]

    Behrendt A, Nakamura T, Tsuda T 2004 Appl. Opt. 43 2930

    [13]

    Zeyn J, Lahmann W, Weitkamp C 1996 Opt. Lett. 21 1301

    [14]

    Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat.. 153 113

    [15]

    Mao J D, Hua D X, Huo L L, Wang Y F, Wang L 2010 Acta Optic. Sin. 30 8(in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 8]

    [16]

    Radlach M, Behrendt A, Wulfmeyer V 2008 Atmos. Chem. Phys. 8 159

    [17]

    Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301(in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 物理学报 65 143301]

    [18]

    Norton E G, Povey I M, South A M, Jones R L 2001 Proc. SPIE 4153 657

    [19]

    Li S C, Hua D X, Wang L L, Song Y H 2013 Optik 124 1450

    [20]

    Li S C, Hua D X, Song Y H, Tian X Y 2012 Acta Photon. Sin. 41 1053(in Chinese) [李仕春, 华灯鑫, 宋跃辉, 田小雨 2012 光子学报 41 1053]

    [21]

    Hoskins L C 1975 J. Chem. Educ. 52 568

  • [1]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 58 313(in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球物理学报 58 313]

    [2]

    Yang J, Liu Q Q, Dai W, Mao X L, Zhang J H, Li M 2016 Acta Phys. Sin. 65 094209(in Chinese) [杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏 2016 物理学报 65 094209]

    [3]

    Cooney J 1972 J. Apll. Meteorol. 11 108

    [4]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305

    [5]

    Shi J L, Guo P F, Huang Y, Qian J C, Wang H P, Liu J, He X D 2015 Acta Phys. Sin. 64 024215(in Chinese) [史久林, 郭鹏峰, 黄育, 钱佳成, 王泓鹏, 刘娟, 何兴道 2015 物理学报 64 024215]

    [6]

    Hua D X, Song X Q 2008 Infrar. Laser Eng. 38 21(in Chinese) [华灯鑫, 宋小全 2008 红外与激光工程 38 21]

    [7]

    Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244

    [8]

    Arshinov Y, Bobrovnikov S, Serikov I, Ansmann A, Wandinger U, Althausen D, Mattis I, Mller D 2005 Appl. Opt. 44 3593

    [9]

    Balin I, Serikov I, Bobrovnikov S, Simeonov V, Calpini B, Arshinov Y, van den Bergh H 2004 Appl. Phys.. 9 775

    [10]

    Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304

    [11]

    Su J, Zhang Y C, Zhao Y F, Liu Y L, Hong G L, Zhao P T, Qu K F, Xie J 2007 Chin. J. Lasers 34 94(in Chinese) [苏嘉, 张寅超, 赵曰峰, 刘玉丽, 洪光烈, 赵培涛, 屈凯峰, 谢军 2007 红外与激光工程 34 94]

    [12]

    Behrendt A, Nakamura T, Tsuda T 2004 Appl. Opt. 43 2930

    [13]

    Zeyn J, Lahmann W, Weitkamp C 1996 Opt. Lett. 21 1301

    [14]

    Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat.. 153 113

    [15]

    Mao J D, Hua D X, Huo L L, Wang Y F, Wang L 2010 Acta Optic. Sin. 30 8(in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 8]

    [16]

    Radlach M, Behrendt A, Wulfmeyer V 2008 Atmos. Chem. Phys. 8 159

    [17]

    Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301(in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 物理学报 65 143301]

    [18]

    Norton E G, Povey I M, South A M, Jones R L 2001 Proc. SPIE 4153 657

    [19]

    Li S C, Hua D X, Wang L L, Song Y H 2013 Optik 124 1450

    [20]

    Li S C, Hua D X, Song Y H, Tian X Y 2012 Acta Photon. Sin. 41 1053(in Chinese) [李仕春, 华灯鑫, 宋跃辉, 田小雨 2012 光子学报 41 1053]

    [21]

    Hoskins L C 1975 J. Chem. Educ. 52 568

  • [1] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [2] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [3] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [4] 王玉峰, 张晶, 汤柳, 王晴, 高天乐, 宋跃辉, 狄慧鸽, 李博, 华灯鑫. 基于拉曼激光雷达的大气三相态水同步精细探测分光系统的设计与仿真分析. 物理学报, 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [5] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真. 物理学报, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [6] 李银海, 许昭怀, 王双, 许立新, 周志远, 史保森. 两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉. 物理学报, 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [7] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [8] 李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫. 绝对探测大气温度的纯转动拉曼激光雷达系统. 物理学报, 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [9] 巩鑫, 华灯鑫, 李仕春, 王骏, 石晓菁. 基于取样光纤布拉格光栅的全光纤拉曼测温分光系统设计及优化. 物理学报, 2016, 65(7): 073601. doi: 10.7498/aps.65.073601
    [10] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [11] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法. 物理学报, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [12] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究. 物理学报, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [13] 任秀云, 田兆硕, 孙兰君, 付石友. 激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响. 物理学报, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [14] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [15] 耿超, 谭毅, 牟进博, 李新阳. 多单元光纤激光阵列的倾斜控制实验研究. 物理学报, 2013, 62(2): 024206. doi: 10.7498/aps.62.024206
    [16] 王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎. 水汽探测拉曼激光雷达的新型光谱分光系统设计与分析. 物理学报, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [17] 汪少林, 苏 嘉, 赵培涛, 曹开法, 胡顺星, 魏合理, 谭 锟, 胡欢陵. 基于三级Fabry-Perot标准具的纯转动拉曼测温激光雷达. 物理学报, 2008, 57(6): 3941-3947. doi: 10.7498/aps.57.3941
    [18] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [19] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱. 物理学报, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
计量
  • 文章访问数:  6702
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-14
  • 修回日期:  2017-10-07
  • 刊出日期:  2018-01-05

/

返回文章
返回