搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性阻尼驱动的莱维飞行动力学性质

刘剑 陈晓白 徐登辉 李熊 陈晓松 杨波

引用本文:
Citation:

非线性阻尼驱动的莱维飞行动力学性质

刘剑, 陈晓白, 徐登辉, 李熊, 陈晓松, 杨波

Dynamical mechanism of Lévy flight driven by the nonlinear friction

Liu Jian, Chen Xiao-Bai, Xu Deng-Hui, Li Xiong, Chen Xiao-Song, Yang Bo
PDF
导出引用
  • 基于动力学连续时间无规行走方法,对受非线性阻尼驱动的莱维飞行在自由势场以及周期势场中的扩散行为进行了研究. 非线性阻尼取代斯托克斯阻尼,通过动力学连续时间无规行走方法体现在莱维随机行走粒子的每一步跳跃中. 结果显示,非线性阻尼的强阻尼耗散作用导致莱维飞行的超扩散行为衰减为正常扩散,粒子速度定态分布呈现双峰与单峰的相互转化. 周期势场的束缚作用会导致粒子扩散达到一个稳定态,而莱维粒子自身性质会使粒子存在极小概率跃出周期势阱的跳跃行为,表现为方均位移随时间的演化出现跃迁现象.
    As a basic problem, anomalous diffusions in various fields of physics and related science have been studied for several decades. One of the topic problems of anomalous diffusion is Lévy flight, which is employed as the statistical model to solve the problems in various fields. Therefore, studying the dynamical mechanism of Lévy flight, especially in the existence of external potential, is of importance for relative theoretical and experimental research. In this paper, within the framework of dynamical continuous time random walk method, the Lévy flight diffusive behaviors and dynamical mechanisms driven by nonlinear friction are studied in the force-free potential and periodic potential. The nonlinear friction instead of Stokes friction is considered in each step of Lévy random walker through the dynamical continuous time random walk method. In the force-free potential, the nonlinear friction term can be considered to be inharmonic potential in the velocity space which can restrain the velocity of random walker, so the anomalous superdiffusion of Lévy flight turns into a behavior in the normal case because of the strong dissipative effect of the nonlinear friction. Due to the introduction of the nonlinear friction, the velocity steady probability density distribution behaves as transitions between bimodal shape and unimodal shape, which is detrmined by the Lévy index μ and the friction indexes γ0 and γ2. The bimodality is most pronounced at μ =1, with μ increasing the bimodality becomes weaker, and vanishes at μ =2 which is the Gaussian case. Besides, there is a critical value γ0c=0.793701, which also determines the bimodal behaviors. For γ0=0 the bimodality is most pronounced, as γ0 increases it smooths out and turns into a unimodal one for γ0 > γ0c. In the existence of periodic potential, the Lévy random walker can be captured by the periodical potential due to the introduction of nonlinear friction, which behaves as the mean square displacement x2(t)> of the random walker and can reach a steady state quite quickly after a short lag time. However, the restraint is not equivalent to truncation procedures. Since the velocity of random walker obeys Lévy distribution, there is still extremely large jump length for random walker with extremely small probability. When the extremely large jump length is long enough and the barrier height U0 is not comparably high, the random walker can cross the barrier height of the periodic potential and jump out of the periodic potential, which behaves as the mean square displacement x2(t)> and a leap from a steady state to another one appears. However, the restraint on the random walker from the nonlinear friction always exists, so the random walker is captured again by the periodic potential, which means that the mean square displacement comes into a steady state again.
      通信作者: 刘剑, liujian@mail.bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11547231,61405003,11404013)资助的课题.
      Corresponding author: Liu Jian, liujian@mail.bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547231, 61405003, 11404013).
    [1]

    Bouchaud J-P, Georges A 1990 Phys. Rep. 195 127

    [2]

    Havlin S, Ben-Avrahm D 1987 Adv. Phys. 36 695

    [3]

    Metzler R, Jeon J H, Cherstvy A G, Barkai E 2014 Phys. Chem. Chem. Phys. 16 24128

    [4]

    Bao J D, Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104

    [5]

    Montroll E W, Weiss G H 1965 J. Math. Phys. 6 167

    [6]

    Scher H, Montroll E W 1975 Phys. Rev. B 12 2455

    [7]

    Metzler R, Klafter J 2000 Phys. Rep. 339 1

    [8]

    Haus W, Kehr K W 1987 Phys. Rep. 150 263

    [9]

    Liu J, Yang B, Chen X S, Bao J D 2015 Eur. Phys. J. B 88 88

    [10]

    Zaburdaev V, Denisov S, Klafter J 2015 Rev. Mod. Phys. 87 483

    [11]

    Jager M, Weissing F J, Herman P M, Noler B A, Koppel J 2011 Science 332 1551

    [12]

    Harris T H, Banigan E J, Christian D A, Konradt C, Wojno E D T, Norose K, Wilson E H, John B, Weninger W, Luster A D, Liu A J, Hunter C A 2012 Nature 486 545

    [13]

    Barthelemy P, Bertolotti J, Wiersma D S 2008 Nature 453 495

    [14]

    Margolin G, Barkai E 2005 Phys. Rev. Lett. 94 080601

    [15]

    Barkai E, Garini Y, Metzler R 2012 Phys. Today 65 29

    [16]

    Jespersen S, Metzler R, Fogedby H C 1999 Phys. Rev. E 59 2736

    [17]

    Shlesinger M F, West B J, Klafter J 1987 Phys. Rev. Lett. 58 11

    [18]

    Klafter J, Blumen A, Shlesinger M F 1987 Phys. Rev. A 35 7

    [19]

    Mantegna R N, Stanley H E 1994 Phys Rev. Lett. 73 2946

    [20]

    Koponen I 1995 Phys. Rev. E 52 1197

    [21]

    Chechkin A V, Gonchar V, Klafter J, Metzler R 2005 Phys. Rev. E 72 010101

    [22]

    Lindner B 2010 New J. Phys. 12 063026

    [23]

    Bao J D, Liu J 2013 Phys. Rev. E 88 022153

    [24]

    Sagi Y, Brook M, Almog I, Davidson N 2012 Phys. Rev. Lett. 108 093002

    [25]

    Kessler D A, Barkai E 2012 Phys. Rev. Lett. 108 230602

    [26]

    Chechkin A V, Gonchar V, Klafter J, Metzler R, Tanatarov L 2002 Chem. Phys. 284 233

    [27]

    Chechkin A V, Klafter J, Gonchar V, Metzler R, Tanatarov L 2003 Phys. Rev. E 67 010102

  • [1]

    Bouchaud J-P, Georges A 1990 Phys. Rep. 195 127

    [2]

    Havlin S, Ben-Avrahm D 1987 Adv. Phys. 36 695

    [3]

    Metzler R, Jeon J H, Cherstvy A G, Barkai E 2014 Phys. Chem. Chem. Phys. 16 24128

    [4]

    Bao J D, Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104

    [5]

    Montroll E W, Weiss G H 1965 J. Math. Phys. 6 167

    [6]

    Scher H, Montroll E W 1975 Phys. Rev. B 12 2455

    [7]

    Metzler R, Klafter J 2000 Phys. Rep. 339 1

    [8]

    Haus W, Kehr K W 1987 Phys. Rep. 150 263

    [9]

    Liu J, Yang B, Chen X S, Bao J D 2015 Eur. Phys. J. B 88 88

    [10]

    Zaburdaev V, Denisov S, Klafter J 2015 Rev. Mod. Phys. 87 483

    [11]

    Jager M, Weissing F J, Herman P M, Noler B A, Koppel J 2011 Science 332 1551

    [12]

    Harris T H, Banigan E J, Christian D A, Konradt C, Wojno E D T, Norose K, Wilson E H, John B, Weninger W, Luster A D, Liu A J, Hunter C A 2012 Nature 486 545

    [13]

    Barthelemy P, Bertolotti J, Wiersma D S 2008 Nature 453 495

    [14]

    Margolin G, Barkai E 2005 Phys. Rev. Lett. 94 080601

    [15]

    Barkai E, Garini Y, Metzler R 2012 Phys. Today 65 29

    [16]

    Jespersen S, Metzler R, Fogedby H C 1999 Phys. Rev. E 59 2736

    [17]

    Shlesinger M F, West B J, Klafter J 1987 Phys. Rev. Lett. 58 11

    [18]

    Klafter J, Blumen A, Shlesinger M F 1987 Phys. Rev. A 35 7

    [19]

    Mantegna R N, Stanley H E 1994 Phys Rev. Lett. 73 2946

    [20]

    Koponen I 1995 Phys. Rev. E 52 1197

    [21]

    Chechkin A V, Gonchar V, Klafter J, Metzler R 2005 Phys. Rev. E 72 010101

    [22]

    Lindner B 2010 New J. Phys. 12 063026

    [23]

    Bao J D, Liu J 2013 Phys. Rev. E 88 022153

    [24]

    Sagi Y, Brook M, Almog I, Davidson N 2012 Phys. Rev. Lett. 108 093002

    [25]

    Kessler D A, Barkai E 2012 Phys. Rev. Lett. 108 230602

    [26]

    Chechkin A V, Gonchar V, Klafter J, Metzler R, Tanatarov L 2002 Chem. Phys. 284 233

    [27]

    Chechkin A V, Klafter J, Gonchar V, Metzler R, Tanatarov L 2003 Phys. Rev. E 67 010102

  • [1] 许鹏飞, 公徐路, 李毅伟, 靳艳飞. 含记忆阻尼函数的周期势系统随机共振. 物理学报, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [2] 杨晓荣, 王琼, 叶唐进, 土登次仁. 考虑对流和扩散两种动力学起源的连续时间随机行走模型. 物理学报, 2019, 68(13): 130501. doi: 10.7498/aps.68.20190088
    [3] 王文娟, 童培庆. 广义Fibonacci时间准周期量子行走波包扩散的动力学特性. 物理学报, 2016, 65(16): 160501. doi: 10.7498/aps.65.160501
    [4] 刘飞, 刘彬, 刘浩然. 一类弹性和阻尼双分段非线性约束系统周期响应特性研究. 物理学报, 2015, 64(12): 124601. doi: 10.7498/aps.64.124601
    [5] 李晓静, 严静, 陈绚青, 曹毅. 具有一般非线性弹性力和广义阻尼力的相对转动非线性系统的周期解问题. 物理学报, 2014, 63(20): 200202. doi: 10.7498/aps.63.200202
    [6] 陈丽娟, 鲁世平. 零维气候系统非线性模式的周期解问题. 物理学报, 2013, 62(20): 200201. doi: 10.7498/aps.62.200201
    [7] 吕海艳, 袁伟, 侯喜文. 场与非线性介质原子相互作用模型的量子纠缠动力学特性. 物理学报, 2013, 62(11): 110301. doi: 10.7498/aps.62.110301
    [8] 田艳, 黄丽, 罗懋康. 噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响. 物理学报, 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [9] 李晓静, 陈绚青. 具有一般广义阻尼力和强迫周期力的相对转动非线性动力学模型的周期解. 物理学报, 2012, 61(21): 210201. doi: 10.7498/aps.61.210201
    [10] 王坤, 关新平, 乔杰敏. 一类相对转动非线性动力学系统周期解的唯一性与精确周期解. 物理学报, 2010, 59(6): 3648-3653. doi: 10.7498/aps.59.3648
    [11] 王沙, 杨志安. 二维周期光子晶格中的非线性Landau-Zener隧穿. 物理学报, 2009, 58(2): 729-733. doi: 10.7498/aps.58.729
    [12] 林 方, 包景东. 基于连续时间无规行走模型研究反常扩散. 物理学报, 2008, 57(2): 696-702. doi: 10.7498/aps.57.696
    [13] 罗质华, 余超凡. 一维分子晶体激子-孤子运动的激子运动学和动力学非线性效应. 物理学报, 2008, 57(6): 3720-3729. doi: 10.7498/aps.57.3720
    [14] 雷 敏, 孟 光, 冯正进. 连续动力系统时间序列的非线性检验. 物理学报, 2005, 54(3): 1059-1063. doi: 10.7498/aps.54.1059
    [15] 李德生, 张鸿庆. 非线性耦合标量场方程的新双周期解(Ⅱ). 物理学报, 2003, 52(10): 2379-2385. doi: 10.7498/aps.52.2379
    [16] 李德生, 张鸿庆. 非线性耦合标量场方程的新双周期解(Ⅰ). 物理学报, 2003, 52(10): 2373-2378. doi: 10.7498/aps.52.2373
    [17] 王登龙, 颜晓红, 唐翌, 丁建文, 曹觉先. 阻尼作用下一维非线性单原子链中的孤子. 物理学报, 2001, 50(7): 1201-1206. doi: 10.7498/aps.50.1201
    [18] 一维晶化束的非线性动力学(Ⅲ). 物理学报, 1990, 39(8): 25-31. doi: 10.7498/aps.39.25-2
    [19] 一维晶化束的非线性动力学(Ⅰ). 物理学报, 1990, 39(8): 7-17. doi: 10.7498/aps.39.7
    [20] 一维晶化束的非线性动力学(Ⅱ). 物理学报, 1990, 39(8): 18-24. doi: 10.7498/aps.39.18
计量
  • 文章访问数:  5236
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-13
  • 修回日期:  2016-06-01
  • 刊出日期:  2016-08-05

/

返回文章
返回