搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号

杨峰 唐曦 钟祝强 夏光琼 吴正茂

引用本文:
Citation:

基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号

杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂

Generations of multi-channel high-quality chaotic signals based on a ring system composed of polarization rotated coupled 1550 nm vertical-cavity surface-emitting lasers

Yang Feng, Tang Xi, Zhong Zhu-Qiang, Xia Guang-Qiong, Wu Zheng-Mao
PDF
导出引用
  • 提出了一种基于三个单向偏振旋转耦合1550 nm垂直腔面发射激光器(1550 nm-VCSELs)构成的环形系统获取多路高质量混沌信号的方案.利用自旋反转模型,数值研究了该环形系统中三个VCSELs的偏振分辨非线性动力学特性;利用自相关和互信息方法讨论了注入强度和频率失谐对三个VCSELs中各偏振分量输出时间序列的时延特征(TDS)的影响.研究结果表明:通过选择合适的注入强度和频率失谐,三个VCSELs均可同时输出X-偏振分量(X-PC)和Y-偏振分量(Y-PC)的平均功率可比拟的混沌信号,而且这些混沌信号的TDS通过进一步优化耦合参数可得到较好的抑制.在此基础上,进一步对三个VCSELs输出的六路混沌信号之间的相关性进行了分析,给出了除同一VCSEL输出的X-PC与Y-PC之间存在较强的相关性外其他信号之前关联性较弱的参数范围.
    Optical chaos based on semiconductor laser (SL) has attracted much attention due to its potential application in various fields such as secure optical communication, chaotic radar, fast physical random bit generation, etc. By introducing external perturbations such as optical feedback, optical injection or optoelectronic feedback, SL can be driven into chaotic dynamic state. In general, an obvious time-delay signature (TDS) can be observed in a chaotic SL system with optical feedback, which is undesirable in some applications. So far, several schemes have been reported on the suppression of the TDS in chaotic SL systems, which are mostly based on external cavity feedback systems or mutually coupled systems. In this work, a novel scheme for suppressing TDS to generate multi-channel high-quality chaotic signals is proposed and numerically simulated based on a ring system composed of three unidirectionally polarization-rotated coupled 1550 nm vertical-cavity surface-emitting lasers (1550 nm-VCSELs). In this scheme, the output from the first 1550 nm-VCSEL passes through an optical circulator (OC), a Faraday rotator (FR) and a variable attenuator (VA), and then is injected into the second 1550 nm-VCSEL. The output from the second (third) 1550 nm-VCSEL passes through a similar path mentioned above, and then is injected into the third (first) 1550 nm-VCSEL. The polarization direction and the strength of injection light are controlled by the FR and VA, respectively. Adopting the spin flip model (SFM), the polarization-resolved dynamical characteristics of the three VCSELs in the ring system are analyzed. By the aid of self-correlation function (SF) and mutual information (MI), the influences of the coupled strength and frequency detuning on the TDS of polarization-resolved chaotic signal output from the three VCSELs are discussed. The results show that through selecting suitable coupling strength and frequency detuning, both the X-polarization component (X-PC) and Y-polarization component (Y-PC) in the three VCSELs can simultaneously be lased with comparative output powers, and the TDSs of these polarization components can also be effectively suppressed. Furthermore, we investigate the cross-correlation among the six-channel chaotic signals output from these VCSELs, and determine the region of coupled parameters for generating six-channel chaotic signals, within which satisfied is the weak cross-correlation between two signals from different VCSELs. Theoretically, the six-channel chaotic outputs can be used as physical entropy sources to generate six-channel random number sequences. By further merging the above two channel random bit sequences with weak cross-correlation, more channel random bit sequences with higher rate can be obtained. We hope this work can provide an effective guidance for multi-channel high-rate random bit generation.
      通信作者: 吴正茂, zmwu@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275116,61475127,61575163)、中央高校基本科研业务费专项资金(批准号:XDJK2016D060)和重庆市研究生科研创新项目(批准号:CYB14054)资助的课题.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275116, 61475127, 61575163), the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2016D060) and the Postgraduate Research and Innovation Project of Chongqing Municipality, China (Grant No. CYB14054).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728

    [5]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nature Photon. 4 58

    [6]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [7]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [8]

    Avila M J F, Leite J R R 2007 Opt. Lett. 32 2960

    [9]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [10]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [11]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林2012物理学报61 160505]

    [12]

    Lin F Y, Liu J M 2007 Appl. Opt. 46 7262

    [13]

    Li S S, Chan S C 2012 Opt. Express 20 1741

    [14]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [15]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [16]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2011 Chin. Phys. Lett. 28 014203

    [17]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [18]

    Li Y, Wu Z M, Zhong Z Q, Yang X J, Mao S, Xia G Q 2014 Opt. Express 22 19610

    [19]

    Hong Y H 2013 Opt. Express 21 17894

    [20]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [21]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [22]

    Sciamanna M, Gatare I, Locquet A, Panajotov 2007 Phys. Rev. E 75 056213

    [23]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700108

    [24]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [25]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [26]

    Torre M S, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [27]

    Deng T, Wu Z M, Xia G Q 2015 IEEE Photon. Technol. Lett. 27 2075

    [28]

    Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728

    [5]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nature Photon. 4 58

    [6]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [7]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [8]

    Avila M J F, Leite J R R 2007 Opt. Lett. 32 2960

    [9]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [10]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [11]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林2012物理学报61 160505]

    [12]

    Lin F Y, Liu J M 2007 Appl. Opt. 46 7262

    [13]

    Li S S, Chan S C 2012 Opt. Express 20 1741

    [14]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [15]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [16]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2011 Chin. Phys. Lett. 28 014203

    [17]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [18]

    Li Y, Wu Z M, Zhong Z Q, Yang X J, Mao S, Xia G Q 2014 Opt. Express 22 19610

    [19]

    Hong Y H 2013 Opt. Express 21 17894

    [20]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [21]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [22]

    Sciamanna M, Gatare I, Locquet A, Panajotov 2007 Phys. Rev. E 75 056213

    [23]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700108

    [24]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [25]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [26]

    Torre M S, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [27]

    Deng T, Wu Z M, Xia G Q 2015 IEEE Photon. Technol. Lett. 27 2075

    [28]

    Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强. 物理学报, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [3] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [4] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [5] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [6] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [7] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [8] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [9] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [10] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [11] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [12] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [13] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [14] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究. 物理学报, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [15] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [16] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [17] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究. 物理学报, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [18] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] 赵红东, 宋殿友, 张智峰, 孙 静, 孙 梅, 武 一, 温幸饶. n型DBR中电势对垂直腔面发射激光器阈值的影响. 物理学报, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  5471
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-07-11
  • 刊出日期:  2016-10-05

/

返回文章
返回