搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三元(Co0.5Cu0.5)100-xSnx合金的热物理性质与液固相变机理

刘金明 翟薇 周凯 耿德路 魏炳波

引用本文:
Citation:

三元(Co0.5Cu0.5)100-xSnx合金的热物理性质与液固相变机理

刘金明, 翟薇, 周凯, 耿德路, 魏炳波

Thermophysical properties and liquid-solid transition mechanisms of ternary (Co0.5Cu0.5)100-xSnx alloys

Liu Jin-Ming, Zhai Wei, Zhou Kai, Geng De-Lu, Wei Bing-Bo
PDF
导出引用
  • 本文系统研究了三元(Co0.5Cu0.5)100-xSnx(x=10,20,30,40,50 at%)合金的热物理性质及其在近平衡条件下的微观凝固组织特征.采用差示扫描量热法(DSC)确定了合金的液相限、固相限温度和熔化潜热,并建立了它们与合金成分之间的函数关系.实验发现,Sn元素的引入提高了液态三元(Co0.5Cu0.5)100-xSnx合金的过冷能力,当Sn含量为50 at%时,合金的过冷度达到最大值68 K.基于DSC曲线和微观组织形态确定了近平衡条件下合金的液固相变过程和室温下的相组成,发现当Sn含量低于30 at%时,初生相为(Co)相,而当Sn含量超过30 at%时,Co3Sn2相成为领先形核相.在293473 K温度范围内,实验测定了固态三元(Co0.5Cu0.5)100-xSnx合金的热扩散系数和比热.结合所测定的固态合金密度,导出了三元(Co0.5Cu0.5)100-xSnx合金在室温293 K下的热导率,发现其随Sn含量的增加呈现先增大后减小的变化规律.
    The thermophysical properties and liquid-solid phase transition characteristics of ternary (Co0.5Cu0.5)100-xSnx(x=10, 20, 30, 40 and 50 at%) alloys are systematically investigated. The liquidus temperature and latent heat of fusion, as well as the undercooling are determined by differential scanning calorimetry (DSC) method. Based on the measured data, their relationships with Sn content are fitted by polynomial functions. The liquidus temperature shows a decreasing tendency with the increase of Sn content. The undercooling of liquid (Co0.5Cu0.5)100-xSnx alloys significantly increases with increasing Sn amount, indicating that the addition of Sn element enhances the undercoolability. By using the laser-flash and DSC methods, the thermal diffusion coefficients and specific heats of solid ternary (Co0.5Cu0.5)100-xSnx alloys are respectively measured in a temperature range from 293 to 473 K. The thermal diffusion coefficients increase linearly as temperature rises. The thermal diffusion coefficient varies from 1.0610-5 to 1.1210-5 m2s-1 for ternary Co45Cu45Sn10 alloy, which is close to that of Co element but much lower than those of Cu and Sn elements in the same temperature range. However, the thermal diffusion coefficients of other (Co0.5Cu0.5)100-xSnx alloys are far less than that of ternary Co45Cu45Sn10 alloy. The specific heat shows an increasing trend with temperature, and drops apparently with increasing Sn amount. From the measured thermal diffusion coefficients, specific heats and densities, the thermal conductivities of ternary (Co0.5Cu0.5)100-xSnx alloys at 293 K are derived. With the Sn content increasing up to 40 at%, the thermal conductivities for (Co0.5Cu0.5)100-xSnx alloys monotonically decrease from 33.83 to 7.90 Wm-1K-1, and subsequently increases slightly when the Sn content further increases up to 50 at%. In addition, on the basis of the DSC curves and solidification microstructures, the liquid-solid phase transitions are also explored. When the Sn content is less than 30 at%, the primary (Co) phase appears as coarse dendrites, whose volume fraction decreases as Sn content increases. Once Sn content exceeds 30 at%, the Co3Sn2 phase preferentially nucleates and grows during solidification, which occupies about 89% volume in the solidified Co30Cu30Sn40 alloy. The phase constitution investigation indicates that with the increase of the Sn content, the (Cu) solid solution phase disappears, whereas intermetallic compounds, including Cu41Sn11, Cu3Sn, and Cu6Sn5 phases successively precipitate from the alloy melts. The (Sn) solid solution phase even appears when Sn amount reaches 50 at%.
      通信作者: 翟薇, zhaiwei322@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51327901,51271150,51571164,51506182)、陕西省青年科技新星项目和西北工业大学翱翔人才计划资助的课题.
      Corresponding author: Zhai Wei, zhaiwei322@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327901, 51271150, 51571164, 51506182), Young scientist program of Shaanxi Province and NPU Excellent Personnel Supporting Project of AoXiang New Star.
    [1]

    Gente C, Oehring M, Bormann R 1993Phys. Rev. B 48 13244

    [2]

    Miranda M G M, Estévez-Rams E, Martínez G, Baibich M N 2003Phys. Rev. B 68 014434

    [3]

    Fan X, Mashimo T, Huang X, Kagayama T, Chiba A, Koyama K, Motokawa M 2004Phys. Rev. B 69 094432

    [4]

    Yang W, Chen S H, Yu H, Li S, Liu F, Yang G C 2012Appl. Phys. A 109 665

    [5]

    Yan N, Wang W L, Dai F P, Wei B B 2011Acta Phys. Sin. 60 034602(in Chinese)[闫娜, 王伟丽, 代富平, 魏炳波2011物理学报60 034602]

    [6]

    Munitz A, Venkert A, Landau P, Kaufman M J, Abbaschian R 2012J. Mater. Sci. 47 7955

    [7]

    Zhai W, Hu L, Zhou K, Wei B B 2016J. Phys. D:Appl. Phys. 49 165306

    [8]

    Curiotto S, Battezzati L, Johnson E, Pryds N 2007Acta Mater. 55 6642

    [9]

    Zang D Y, Wang H P, Dai F P, Langevin D, Wei B B 2011Appl. Phys. A 102141

    [10]

    Du L, Wang L, Zheng B, Du H 2016J. Alloy. Compd. 663 243

    [11]

    Adhikari D, Jha I S, Singh B P 2010Physica B 405 1861

    [12]

    Chen S W, Chang J S, Pan K, Hsu C M, Hsu C W 2013Metall. Mater. Trans. A 44 1656

    [13]

    Andersson C, Sun P, Liu J 2008J. Alloy. Compd. 457 97

    [14]

    Chuang T H, Jain C C, Wu H M 2008J. Electron. Mater. 37 1734

    [15]

    Alvarado J L, Marsh C, Sohn C, Phetteplace G, Newell T 2007Int. J. Heat Mass Tran. 50 1938

    [16]

    Parker W J, Jenkins R J, Butler C P, Abbott G L 1961J. Appl. Phys. 32 1679

    [17]

    Hofmeister A M 1999Science 283 1699

    [18]

    Bocchini G F, Bovesecchi G, Coppa P, Corasaniti S, Montanari R, Varone A 2016Int. J. Thermophys. 37 1

    [19]

    Beck P, Goncharov A F, Struzhkin V V, Militzer B, Mao H, Hemley R J 2007Appl. Phys. Lett. 91 181914

    [20]

    Huang F, Chen R, Ding H, Su Y 2016Int. J. Heat Mass Tran. 100 428

    [21]

    Poteryaev A I, Skornyakov S L, Belozerov A S, Anisimov V I 2015Phys. Rev. B 91 195141

    [22]

    Gaber A, Afify N 2002Physica B 315 1

    [23]

    Zhou S Q, Ni R 2008Appl. Phys. Lett. 92 093123

    [24]

    Yu X, Hofmeister A M 2011J. Appl. Phys. 109 033516

    [25]

    Xuan Y, Huang Y, Li Q 2009Chem. Phys. Lett. 479 264

    [26]

    Leitner J, Voňka P, Sedmidubský D, Svoboda P 2010Thermochim. Acta 497 7

    [27]

    Gale W F, Totememier T C 2004Smithells Metals Reference Book (8th Ed.) (Amsterdam:Elsevier Publishers Ltd) pp1-8

    [28]

    Kubišta J, Vřešt'ál J 2000J. Phase Equilib. 21 125

    [29]

    Jiang M, Sato J, Ohnuma I, Kainuma R, Ishida K 2004Calphad 28 213

    [30]

    Gierlotka W, Chen S W, Lin S K 2007J. Mater. Res. 22 3158

  • [1]

    Gente C, Oehring M, Bormann R 1993Phys. Rev. B 48 13244

    [2]

    Miranda M G M, Estévez-Rams E, Martínez G, Baibich M N 2003Phys. Rev. B 68 014434

    [3]

    Fan X, Mashimo T, Huang X, Kagayama T, Chiba A, Koyama K, Motokawa M 2004Phys. Rev. B 69 094432

    [4]

    Yang W, Chen S H, Yu H, Li S, Liu F, Yang G C 2012Appl. Phys. A 109 665

    [5]

    Yan N, Wang W L, Dai F P, Wei B B 2011Acta Phys. Sin. 60 034602(in Chinese)[闫娜, 王伟丽, 代富平, 魏炳波2011物理学报60 034602]

    [6]

    Munitz A, Venkert A, Landau P, Kaufman M J, Abbaschian R 2012J. Mater. Sci. 47 7955

    [7]

    Zhai W, Hu L, Zhou K, Wei B B 2016J. Phys. D:Appl. Phys. 49 165306

    [8]

    Curiotto S, Battezzati L, Johnson E, Pryds N 2007Acta Mater. 55 6642

    [9]

    Zang D Y, Wang H P, Dai F P, Langevin D, Wei B B 2011Appl. Phys. A 102141

    [10]

    Du L, Wang L, Zheng B, Du H 2016J. Alloy. Compd. 663 243

    [11]

    Adhikari D, Jha I S, Singh B P 2010Physica B 405 1861

    [12]

    Chen S W, Chang J S, Pan K, Hsu C M, Hsu C W 2013Metall. Mater. Trans. A 44 1656

    [13]

    Andersson C, Sun P, Liu J 2008J. Alloy. Compd. 457 97

    [14]

    Chuang T H, Jain C C, Wu H M 2008J. Electron. Mater. 37 1734

    [15]

    Alvarado J L, Marsh C, Sohn C, Phetteplace G, Newell T 2007Int. J. Heat Mass Tran. 50 1938

    [16]

    Parker W J, Jenkins R J, Butler C P, Abbott G L 1961J. Appl. Phys. 32 1679

    [17]

    Hofmeister A M 1999Science 283 1699

    [18]

    Bocchini G F, Bovesecchi G, Coppa P, Corasaniti S, Montanari R, Varone A 2016Int. J. Thermophys. 37 1

    [19]

    Beck P, Goncharov A F, Struzhkin V V, Militzer B, Mao H, Hemley R J 2007Appl. Phys. Lett. 91 181914

    [20]

    Huang F, Chen R, Ding H, Su Y 2016Int. J. Heat Mass Tran. 100 428

    [21]

    Poteryaev A I, Skornyakov S L, Belozerov A S, Anisimov V I 2015Phys. Rev. B 91 195141

    [22]

    Gaber A, Afify N 2002Physica B 315 1

    [23]

    Zhou S Q, Ni R 2008Appl. Phys. Lett. 92 093123

    [24]

    Yu X, Hofmeister A M 2011J. Appl. Phys. 109 033516

    [25]

    Xuan Y, Huang Y, Li Q 2009Chem. Phys. Lett. 479 264

    [26]

    Leitner J, Voňka P, Sedmidubský D, Svoboda P 2010Thermochim. Acta 497 7

    [27]

    Gale W F, Totememier T C 2004Smithells Metals Reference Book (8th Ed.) (Amsterdam:Elsevier Publishers Ltd) pp1-8

    [28]

    Kubišta J, Vřešt'ál J 2000J. Phase Equilib. 21 125

    [29]

    Jiang M, Sato J, Ohnuma I, Kainuma R, Ishida K 2004Calphad 28 213

    [30]

    Gierlotka W, Chen S W, Lin S K 2007J. Mater. Res. 22 3158

  • [1] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制. 物理学报, 2024, 73(8): 086401. doi: 10.7498/aps.73.20232002
    [2] 李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数. 物理学报, 2017, 66(18): 188702. doi: 10.7498/aps.66.188702
    [3] 张振霞, 王辰宇, 李强, 吴书贵. 准线性扩散系数与空间高能电子特征物理量的关系研究. 物理学报, 2014, 63(7): 079401. doi: 10.7498/aps.63.079401
    [4] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [5] 邵宗乾, 陈金望, 李玉奇, 潘孝胤. 限制在一维谐振势下的三维自由电子气的一些热力学性质. 物理学报, 2014, 63(24): 240502. doi: 10.7498/aps.63.240502
    [6] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [7] 宋渤, 王晓坡, 吴江涛, 刘志刚. 稀有气体纯质热物理性质的预测. 物理学报, 2011, 60(3): 033401. doi: 10.7498/aps.60.033401
    [8] 吴子华, 谢华清. 电脉冲对多晶La0.7Ca0.3MnO3比热的影响. 物理学报, 2010, 59(4): 2703-2707. doi: 10.7498/aps.59.2703
    [9] 吴延昭, 谢宁, 刘建静, 焦永芳. 单壁碳纳米管声子谱及比热计算. 物理学报, 2009, 58(11): 7787-7791. doi: 10.7498/aps.58.7787
    [10] 陈乐, 王海鹏, 魏炳波. 液态三元Ni-Cu-Fe合金比热的实验与计算研究. 物理学报, 2009, 58(1): 384-389. doi: 10.7498/aps.58.384
    [11] 姚文静, 王楠. Ni-15%Mo合金熔体热物理性质的Monte Carlo模拟. 物理学报, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [12] 梁 维, 肖 杨, 丁建文. 石墨带的晶格动力学研究. 物理学报, 2008, 57(6): 3714-3719. doi: 10.7498/aps.57.3714
    [13] 李 政, 雒建林. 非中心对称超导体Mg10±δIr19B16?δ的超导电性研究. 物理学报, 2008, 57(7): 4508-4511. doi: 10.7498/aps.57.4508
    [14] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [15] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [16] 程金光, 隋 郁, 千正男, 刘志国, 黄喜强, 苗继鹏, 吕 喆, 王先杰, 苏文辉. 单晶NdMnO3的比热研究. 物理学报, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [17] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [18] 胡小华, 陈兆甲, 雒建林, 王玉鹏, 白海洋, 金 铎. Cu掺杂对Kondo绝缘体CeNiSn低温比热的影响. 物理学报, 2000, 49(10): 2109-2112. doi: 10.7498/aps.49.2109
    [19] 赵建华, 刘日平, 周镇华, 张湘义, 张 明, 许应凡, 王文魁. 一种测量液态金属扩散系数的新方法——固/液-液/固复合三层膜法. 物理学报, 1999, 48(3): 416-420. doi: 10.7498/aps.48.416
    [20] 朱宰万, 徐济安. 金属氢——转变压力和物理性质. 物理学报, 1979, 28(6): 865-871. doi: 10.7498/aps.28.865
计量
  • 文章访问数:  4301
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2016-08-14
  • 刊出日期:  2016-11-05

/

返回文章
返回