搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆锥料仓内颗粒周期性脉动特征研究

王会 贾富国 韩燕龙 张亚雄 曹斌

引用本文:
Citation:

圆锥料仓内颗粒周期性脉动特征研究

王会, 贾富国, 韩燕龙, 张亚雄, 曹斌

Cyclical pulsation properties of particles in cone silo

Wang Hui, Jia Fu-Guo, Han Yan-Long, Zhang Ya-Xiong, Cao Bin
PDF
导出引用
  • 料仓卸料过程中的颗粒脉动会引起料仓振动甚至导致结构失效.为了明晰颗粒脉动特征,本文进行了椭球颗粒在不同半锥角深仓的模拟卸料实验,将料仓圆筒部划分为4个固定区域以研究区域内颗粒的运动信息,分析了料仓圆筒部颗粒系统的运动特征.研究结果表明:整个卸料过程颗粒速度始终处于波动变化中,卸料前期表现为大振幅、周期性的剧烈脉动,卸料后期平均速度的变化则是小振幅无规律的波动;剧烈脉动时段各区域的颗粒层平均受力的变化规律与颗粒速度脉动特征相似,越接近储料顶端颗粒脉动振幅越大,表现出更规律的周期性脉动,相邻颗粒层间的脉动波形相似且周期相同,剧烈脉动过程中顶面颗粒呈周期性的自由落体运动,该时段内顶层颗粒每一次的自由落体运动都会引起该范围内颗粒间接触力消失;料仓半锥角越小时剧烈脉动频率越高、振幅越大且脉动持续时间也越长,卸料速度越稳定,且颗粒速度不会出现带有上升趋势的波动.研究结果可为卸料设备的安全设计提供参考.
    Intense particle pulsation during discharging may lead to the vibration of silo, even the failure of silo structure. To date, the studies related to particle pulsation have mainly concentrated in the following aspects: the noise caused by vibration of silo, the minimum decisive height to produce silo music and the factors affecting particle pulsation. However, the above studies cannot in depth analyze the motion state nor the flow law of all particles in silo. To explore the pulsation characteristics of particles, in this paper we simulate the discharging tests of ellipsoidal particles in deep silo with different half-cone angles based on the discrete element method, in order to reveal the mechanisms of particle pulsation and variation of contact force among the particles in the silo. In each simulation discharging test, the cylinder section of silo is divided into 4 fixed areas where flow behavior and the motion characteristics of particles are analyzed. The simulation results show that the velocity fluctuation of particles exists in the whole discharging process. At the early stage of discharging, the cyclical pulsation with large amplitude appears while irregular fluctuation with small amplitude occurs in the later stages. The study also finds that the dynamic characteristics of the axial force among particles are the same as those of velocity pulsation in the corresponding areas. Besides, the amplitude of particle pulsation shows an increase trend and the contact force of particles presents more periodic pulsation along the negative direction of outlet. The pulsation characteristics(velocity pulsation and force pulsation) of adjacent particle layers are similar, including similar waveform and identical cycle. During the intense pulsation stage, each minimum of the axial force of particles in the top layer is close to the gravity, indicating that the contact force among these particles disappears. Furthermore, the periodic pulsation of particles causes the contact force among particles to periodically disappear. It is noted that the stability of discharging, frequency, amplitude and duration of the intense pulsation increase with the decrease of the half-cone angle. In order to evaluate the fluctuation degree of the velocity pulsation, the standard deviation of particle velocities is used. Note that the particle velocities are no longer subjected to the influence of rising trend, which result is obtained by the finite difference method. The results show that the standard deviation gradually increases with the decrease of half-cone angle. This is because the increase of half-cone angle causes the time and amplitude of stable fluctuation to decrease. This numerical study of particle pulsation will provide the reference for safety design of discharging devices.
      通信作者: 贾富国, jfg204@163.com
    • 基金项目: 国家自然科学基金(批准号:51575098)、黑龙江省自然科学基金(批准号:E201322)和哈尔滨市优秀学科带头人基金(批准号:RC2013XK006004)资助的课题.
      Corresponding author: Jia Fu-Guo, jfg204@163.com
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51575098), the National Science Foundation of Heilongjiang Province, China(Grant No. E201322) and the Harbin Foundation for Outstanding Academic Leaders, China(Grant No. RC2013XK006004).
    [1]

    Wang G Q, Hao W J, Wang J X 2010 Discrete Element Method and its Application in EDEM(Xi'an:Xi'an Technological University press) p14(in Chinese)[王国强, 郝万军, 王继新2010离散单元法及其在EDEM上的实践(西安:西安工业大学出版社)第14页]

    [2]

    Sun Q C, Hou M Y, J F 2011 Physics and Mechanics of Granular Materials(Beijing:Science Press) p242(in Chinese)[孙其诚, 厚美瑛, 金峰2011颗粒物质物理与力学(北京:科学出版社)第242页]

    [3]

    Khalilitehrani M, Abrahamsson P J, Rasmuson A 2014 Powder Technol. 263 45

    [4]

    Liu Y, Han Y L, Jia F G, Yao L N, Wang H, Shi Y F 2015 Acta Phys. Sin. 64 114501 (in Chinese)[刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲2015物理学报64 114501]

    [5]

    Chan K W, Kwan A K H 2014 Particuology 16 108

    [6]

    Ouyang H W, Huang S C, Liu Z M, Wang Q 2009 J. Food Eng. 91 118

    [7]

    Liu H X, Xu X M, Guo L F 2014 Trans. Chin. Soc. Agric. Eng. 21 9 (in Chinese)[刘宏新, 徐晓萌, 郭立峰2014农业工程学报21 9]

    [8]

    Silvia V, Riccardo A, Andrea C S 2014 Chem. Eng. Res. Des. 92 256

    [9]

    Osinov VA 1998 Soil Dyn. Earthq. Eng. 17 13

    [10]

    Liu Y 2015 M. S. Dissertation(Harbin:Northeast Agricultural University)(in Chinese)[刘扬2015硕士学位论文(哈尔滨:东北农业大学)]

    [11]

    Uñac R O, Vidales A M, Benegas O A, Ippolito I 2012 Powder Technol. 225 214

    [12]

    Garcimartín A, Zuriguel I 2011 Phys. Rev. E 84 031309

    [13]

    Kmita J 1985 J. Struct. Eng. 111 190

    [14]

    Wilde K, Rucka M, Tejchman J 2008 Powder Technol. 186 113

    [15]

    Phillips C E S 1910 Proc. R. Inst. G. B 19 742

    [16]

    Li H, Kwauk M 1989 Chem. Eng. Sci. 44 261

    [17]

    Yang S C, Hsiau S S 2001 Powder Technol. 120 244

    [18]

    Brown R L, Richards J C 1960 Trans. Inst. Chem. Eng. 38 243

    [19]

    Tejchman J, Gudehus G 1993 Powder Technol. 76 201

    [20]

    Mukesh L D, Kranthi K J 2006 Powder Technol. 167 55

    [21]

    Benson K M, Shandon F Quinna, Sankaran S 2004 Powder Technol. 145 190

    [22]

    Tejchman J 2002 Am. J. Phys. 70 890

    [23]

    Han Y L, Jia F G, Zeng Y, Jiang L W, Zhang Y X, Cao B 2016 Powder Technol. 297 153

    [24]

    Code for Design of Grain Steel Silos 2011 GB 50322(in Chinese)[粮食钢板筒仓设计规范2011 GB 50322]

    [25]

    Ketterhagen W R, Curtis J S, Wassgren C R, Hancock B C2009 Powder Technol. 1 1

    [26]

    Vivanco F, Rica S, Melo F 2012 Granul. Matter 5 563

  • [1]

    Wang G Q, Hao W J, Wang J X 2010 Discrete Element Method and its Application in EDEM(Xi'an:Xi'an Technological University press) p14(in Chinese)[王国强, 郝万军, 王继新2010离散单元法及其在EDEM上的实践(西安:西安工业大学出版社)第14页]

    [2]

    Sun Q C, Hou M Y, J F 2011 Physics and Mechanics of Granular Materials(Beijing:Science Press) p242(in Chinese)[孙其诚, 厚美瑛, 金峰2011颗粒物质物理与力学(北京:科学出版社)第242页]

    [3]

    Khalilitehrani M, Abrahamsson P J, Rasmuson A 2014 Powder Technol. 263 45

    [4]

    Liu Y, Han Y L, Jia F G, Yao L N, Wang H, Shi Y F 2015 Acta Phys. Sin. 64 114501 (in Chinese)[刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲2015物理学报64 114501]

    [5]

    Chan K W, Kwan A K H 2014 Particuology 16 108

    [6]

    Ouyang H W, Huang S C, Liu Z M, Wang Q 2009 J. Food Eng. 91 118

    [7]

    Liu H X, Xu X M, Guo L F 2014 Trans. Chin. Soc. Agric. Eng. 21 9 (in Chinese)[刘宏新, 徐晓萌, 郭立峰2014农业工程学报21 9]

    [8]

    Silvia V, Riccardo A, Andrea C S 2014 Chem. Eng. Res. Des. 92 256

    [9]

    Osinov VA 1998 Soil Dyn. Earthq. Eng. 17 13

    [10]

    Liu Y 2015 M. S. Dissertation(Harbin:Northeast Agricultural University)(in Chinese)[刘扬2015硕士学位论文(哈尔滨:东北农业大学)]

    [11]

    Uñac R O, Vidales A M, Benegas O A, Ippolito I 2012 Powder Technol. 225 214

    [12]

    Garcimartín A, Zuriguel I 2011 Phys. Rev. E 84 031309

    [13]

    Kmita J 1985 J. Struct. Eng. 111 190

    [14]

    Wilde K, Rucka M, Tejchman J 2008 Powder Technol. 186 113

    [15]

    Phillips C E S 1910 Proc. R. Inst. G. B 19 742

    [16]

    Li H, Kwauk M 1989 Chem. Eng. Sci. 44 261

    [17]

    Yang S C, Hsiau S S 2001 Powder Technol. 120 244

    [18]

    Brown R L, Richards J C 1960 Trans. Inst. Chem. Eng. 38 243

    [19]

    Tejchman J, Gudehus G 1993 Powder Technol. 76 201

    [20]

    Mukesh L D, Kranthi K J 2006 Powder Technol. 167 55

    [21]

    Benson K M, Shandon F Quinna, Sankaran S 2004 Powder Technol. 145 190

    [22]

    Tejchman J 2002 Am. J. Phys. 70 890

    [23]

    Han Y L, Jia F G, Zeng Y, Jiang L W, Zhang Y X, Cao B 2016 Powder Technol. 297 153

    [24]

    Code for Design of Grain Steel Silos 2011 GB 50322(in Chinese)[粮食钢板筒仓设计规范2011 GB 50322]

    [25]

    Ketterhagen W R, Curtis J S, Wassgren C R, Hancock B C2009 Powder Technol. 1 1

    [26]

    Vivanco F, Rica S, Melo F 2012 Granul. Matter 5 563

  • [1] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究. 物理学报, 2024, 73(1): 014202. doi: 10.7498/aps.73.20231030
    [2] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析. 物理学报, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [3] 王悦, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流倾斜撞击颗粒膜特征. 物理学报, 2018, 67(10): 104501. doi: 10.7498/aps.67.20172092
    [4] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [5] 蒋燕华, 陈佳民, 施娟, 周锦阳, 李华兵. 三角波脉动流通栓的晶格玻尔兹曼方法模型. 物理学报, 2016, 65(7): 074701. doi: 10.7498/aps.65.074701
    [6] 陈佳民, 蒋燕华, 施娟, 周锦阳, 李华兵. 脉动流在分叉管中通栓效果的晶格玻尔兹曼方法研究. 物理学报, 2015, 64(14): 144701. doi: 10.7498/aps.64.144701
    [7] 刘全, 于明, 林忠, 王瑞利. 流体力学拉氏守恒滑移线算法设计. 物理学报, 2015, 64(19): 194701. doi: 10.7498/aps.64.194701
    [8] 周锦阳, 施娟, 陈佳民, 李华兵. 脉动流血液通栓的晶格玻尔兹曼模型. 物理学报, 2014, 63(19): 194701. doi: 10.7498/aps.63.194701
    [9] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [10] 张文超, 谭思超, 高璞珍. 摇摆条件下自然循环系统流量混沌脉动的检验与预测. 物理学报, 2013, 62(14): 144706. doi: 10.7498/aps.62.144706
    [11] 张阿漫, 肖巍, 王诗平, 程潇欧. 不同沙粒底面下气泡脉动特性实验研究. 物理学报, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [12] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究. 物理学报, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [13] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动. 物理学报, 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [14] 许双英, 胡林华, 李文欣, 戴松元. 染料敏化太阳电池中TiO2颗粒界面接触对电子输运影响的研究. 物理学报, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [15] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [16] 赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武. 含气量对黏性液体中空泡脉动特性的影响. 物理学报, 2009, 58(12): 8400-8405. doi: 10.7498/aps.58.8400
    [17] 李寅阊, 张兆部, 涂洪恩, 刘锐, 胡海云, 厚美瑛. 分仓颗粒布居分聚现象的通量模型. 物理学报, 2009, 58(8): 5857-5863. doi: 10.7498/aps.58.5857
    [18] 蒋 丹, 李松晶, 包 钢. 采用遗传算法对压力脉动过程中气泡模型参数的辨识. 物理学报, 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [19] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究. 物理学报, 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [20] 贾新鸿, 吴正茂, 林晓东, 柏 熙, 夏光琼. 基于延时光电反馈控制两段式半导体激光器的双稳及自脉动特性. 物理学报, 2005, 54(8): 3680-3687. doi: 10.7498/aps.54.3680
计量
  • 文章访问数:  4966
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-04
  • 修回日期:  2016-10-14
  • 刊出日期:  2017-01-05

/

返回文章
返回