搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气泡与自由液面相互作用形成水射流的机理研究

郑监 张舵 蒋邦海 卢芳云

引用本文:
Citation:

气泡与自由液面相互作用形成水射流的机理研究

郑监, 张舵, 蒋邦海, 卢芳云

Formation mechanism of water jets induced by the interaction between bubble and free surface

Zheng Jian, Zhang Duo, Jiang Bang-Hai, Lu Fang-Yun
PDF
导出引用
  • 为探究气泡与自由液面相互作用形成水射流的机理,利用高速摄影系统对电火花引起的气泡脉动和水射流现象进行了实验研究.通过改变气泡初始深度,得到了不同无量纲距离条件下气泡与自由面相互作用形成水射流和气泡脉动的动态过程的图像.通过对不同工况下水射流的形成过程的图像进行分析,发现气泡二次脉动引起的水面扰动与一次脉动引起的水面扰动的叠加是产生不同水面现象的实质性机理,而气泡距离自由液面的无量纲距离对两次扰动的叠加效果起着决定性影响.研究结果可以为气泡与自由液面相互作用导致不同水面现象的认知提供新的视角和参考.
    Explosion in shallow water or small depth water will generate upward water jet, mainly because bubbles generated by explosion will interact with the surface of water. Different underwater depths can result in upward water jets with different kinds of shapes, such as water column, water plume, jet, spall dome, splash, spike, etc. To reveal the formation mechanisms of different types of water jets, a spark bubble experiment platform is set up, and the motions of bubble and free surface are studied experimentally by high-speed photography. The dynamic images for the formation process of the water jets under different initial depths of bubble are obtained. Through theoretical analysis and direct observation of the experimental data, the interaction process between the oscillating bubble and free surface are clarified, and the evolution rule of water jets is obtained. It is found that the key factor affecting the formation of different shapes of the water jets is the superposition of the disturbance of the second bubble pulse and the simple-shape jet induced by the first bubble pulse. Five types of the superpositions are summarized:1) All-fit type, with a large depth of initial bubble, the first and the second bubble impulse fit well to form a smooth and slightly arched water dome; 2) partial-fit type, with a less large depth of initial bubble, higher arched water dome is formed due to the raising effects of second bubble pulse partially fit the initial water dome shape; 3) catch-up type, with a mediate depth of initial bubble, the free-surface jet caused by first bubble pulse will be caught up from the bottom by the second pulse, and form a thin and high velocity jet; 4) run-after type, with a smaller depth of initial bubble, the free-surface jet caused by first bubble pulse will be raised from the bottom by the second pulse, and form a jet with thin head and thick pedestal, sometimes form a crown-type splash; 5) non-superposition type, the depth of initial bubble is so small that the bubble will break up, and no superposition will happen. In summary, the ratio of the initial depth to the maximum radius of bubble is found to be a decisive factor of the superposition type. The initial bubble is described by a dimensionless distance. These conclusions well explain the phenomena observed in experiment, and can provide a new vision and reference to the understanding of the formation mechanism of water jets induced by the interaction between bubble and free surface.
      Corresponding author: Zhang Duo, zhangduo@nudt.edu.cn
    [1]

    Brennen C E 1995 Cavitation and Bubble Dynamics(New York:Oxford University Press) pp47-107

    [2]

    Plesset M S, Prosperetti A 2003 Annu. Rev. Fluid Mech. 9 145

    [3]

    Wang B, Zhang Y P, Wang Y P 2012 Chin. J. High Pressure Phys. 26 577 (in Chinese)[汪斌, 张远平, 王彦平 2012 高压物理学报 26 577]

    [4]

    Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P 2005 J. Fluid Mech. 537 387

    [5]

    Saurel R, Abgrall R 2000 Siam. J. Sci. Comput. 21 1115

    [6]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584

    [7]

    Wang C, Khoo B C 2004 J. Comput. Phys. 194 451

    [8]

    Cole R H (translated by Luo Y J, Han R Z, Guan X) 1965 Underwater Explosion (Beijing:National Defence Industry Press) pp231-235 (in Chinese)[库尔R H 著(罗耀杰, 韩润泽, 官信 译) 1965 水下爆炸 (北京:国防工业出版社) 第231235页]

    [9]

    Kedrinskii V K (translated by Knyazeva S Y) 2005 Hydrodynamics of Explosion:Experiments and Models (Heidelberg:Springer) pp313-353

    [10]

    Pearson A, Blake J R, Otto S R 2004 J. Eng. Math. 48 391

    [11]

    Wang S S, Li M, Ma F 2014 Acta Phys. Sin. 63 194703 (in Chinese)[王树山, 李梅, 马峰 2014 物理学报 63 194703]

    [12]

    Hung C F, Hwangfu J J 2010 J. Fluid Mech. 651 55

    [13]

    Li J, Rong J L 2011 Ocean Eng. 38 1861

    [14]

    Dadvand A, Khoo B C, Shervani-Tabar M T 2009 Exp. Fluids 46 419

    [15]

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701 (in Chinese)[张阿漫, 王超, 王诗平, 程晓达 2012 物理学报 61 084701]

    [16]

    Duocastella M, Fernndez-Pradas J M, Serra P, Morenza J L 2008 Appl. Phys. A 93 453

    [17]

    Robinson P B, Blake J R, Kodama T, Shima A, Tomita Y 2001 J. Appl. Phys. 89 8225

    [18]

    Unger C, Gruene M, Koch L, Koch J, Chichkov B N 2011 Appl. Phys. A 103 271

    [19]

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 641 (in Chinese)[宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 641]

    [20]

    Liu T, Wang J A, Zong S G, Liang S Y 2012 Acta Opt. Sin. 32 0714003 (in Chinese)[刘涛, 王江安, 宗思光, 梁善勇 2012 光学学报 32 0714003]

    [21]

    Taib B B 1985 Ph. D. Dissertation (NSW, Australia:University of Wollongong)

    [22]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

    [23]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 181 197

    [24]

    Blake J R, Gibson D C 1981 J. Fluid Mech. 111 123

    [25]

    Zhang Y L, Yeo K S, Khoo B C, Wang C 2001 J. Comp. Phys. 166 336

    [26]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Theor. Comp. Fluid Dyn. 8 73

    [27]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Comp. Fluids 25 607

    [28]

    Qi D M, Lu C J 1998 J. Shanghai Jiaotong Univ. 32 50 (in Chinese)[戚定满, 鲁传敬 1998 上海交通大学学报 32 50]

    [29]

    Zhang Z Y, Wang Q D, Zhang H S 2005 Chin. J. Theor. Appl. Mech. 37 100 (in Chinese)[张振宇, 王起棣, 张慧生 2005 力学学报 37 100]

    [30]

    Zhang A M, Yao X L, Yu X B 2007 J. Sou. Vib. 311 1196

    [31]

    Wang J X, Zong Z, Sun L, Li Z R, Jiang M Z 2016 J. Hydrodyn. 28 52

    [32]

    Han R, Zhang A M, Li S 2014 Chin. Phys. B 23 034703

    [33]

    Li S, Zhang A M, Wang S P 2013 Acta Phys. Sin. 62 194703 (in Chinese)[李帅, 张阿漫, 王诗平 2013 物理学报 62 194703]

  • [1]

    Brennen C E 1995 Cavitation and Bubble Dynamics(New York:Oxford University Press) pp47-107

    [2]

    Plesset M S, Prosperetti A 2003 Annu. Rev. Fluid Mech. 9 145

    [3]

    Wang B, Zhang Y P, Wang Y P 2012 Chin. J. High Pressure Phys. 26 577 (in Chinese)[汪斌, 张远平, 王彦平 2012 高压物理学报 26 577]

    [4]

    Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P 2005 J. Fluid Mech. 537 387

    [5]

    Saurel R, Abgrall R 2000 Siam. J. Sci. Comput. 21 1115

    [6]

    Geers T L, Hunter K S 2002 J. Acoust. Soc. Am. 111 1584

    [7]

    Wang C, Khoo B C 2004 J. Comput. Phys. 194 451

    [8]

    Cole R H (translated by Luo Y J, Han R Z, Guan X) 1965 Underwater Explosion (Beijing:National Defence Industry Press) pp231-235 (in Chinese)[库尔R H 著(罗耀杰, 韩润泽, 官信 译) 1965 水下爆炸 (北京:国防工业出版社) 第231235页]

    [9]

    Kedrinskii V K (translated by Knyazeva S Y) 2005 Hydrodynamics of Explosion:Experiments and Models (Heidelberg:Springer) pp313-353

    [10]

    Pearson A, Blake J R, Otto S R 2004 J. Eng. Math. 48 391

    [11]

    Wang S S, Li M, Ma F 2014 Acta Phys. Sin. 63 194703 (in Chinese)[王树山, 李梅, 马峰 2014 物理学报 63 194703]

    [12]

    Hung C F, Hwangfu J J 2010 J. Fluid Mech. 651 55

    [13]

    Li J, Rong J L 2011 Ocean Eng. 38 1861

    [14]

    Dadvand A, Khoo B C, Shervani-Tabar M T 2009 Exp. Fluids 46 419

    [15]

    Zhang A M, Wang C, Wang S P, Cheng X D 2012 Acta Phys. Sin. 61 084701 (in Chinese)[张阿漫, 王超, 王诗平, 程晓达 2012 物理学报 61 084701]

    [16]

    Duocastella M, Fernndez-Pradas J M, Serra P, Morenza J L 2008 Appl. Phys. A 93 453

    [17]

    Robinson P B, Blake J R, Kodama T, Shima A, Tomita Y 2001 J. Appl. Phys. 89 8225

    [18]

    Unger C, Gruene M, Koch L, Koch J, Chichkov B N 2011 Appl. Phys. A 103 271

    [19]

    Zong S G, Wang J A, Liu T, Guo G L 2011 Explosion and Shock Waves 31 641 (in Chinese)[宗思光, 王江安, 刘涛, 郭广立 2011 爆炸与冲击 31 641]

    [20]

    Liu T, Wang J A, Zong S G, Liang S Y 2012 Acta Opt. Sin. 32 0714003 (in Chinese)[刘涛, 王江安, 宗思光, 梁善勇 2012 光学学报 32 0714003]

    [21]

    Taib B B 1985 Ph. D. Dissertation (NSW, Australia:University of Wollongong)

    [22]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

    [23]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 181 197

    [24]

    Blake J R, Gibson D C 1981 J. Fluid Mech. 111 123

    [25]

    Zhang Y L, Yeo K S, Khoo B C, Wang C 2001 J. Comp. Phys. 166 336

    [26]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Theor. Comp. Fluid Dyn. 8 73

    [27]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Comp. Fluids 25 607

    [28]

    Qi D M, Lu C J 1998 J. Shanghai Jiaotong Univ. 32 50 (in Chinese)[戚定满, 鲁传敬 1998 上海交通大学学报 32 50]

    [29]

    Zhang Z Y, Wang Q D, Zhang H S 2005 Chin. J. Theor. Appl. Mech. 37 100 (in Chinese)[张振宇, 王起棣, 张慧生 2005 力学学报 37 100]

    [30]

    Zhang A M, Yao X L, Yu X B 2007 J. Sou. Vib. 311 1196

    [31]

    Wang J X, Zong Z, Sun L, Li Z R, Jiang M Z 2016 J. Hydrodyn. 28 52

    [32]

    Han R, Zhang A M, Li S 2014 Chin. Phys. B 23 034703

    [33]

    Li S, Zhang A M, Wang S P 2013 Acta Phys. Sin. 62 194703 (in Chinese)[李帅, 张阿漫, 王诗平 2013 物理学报 62 194703]

  • [1] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [2] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [3] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [4] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟. 物理学报, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [5] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究. 物理学报, 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [6] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究. 物理学报, 2014, 63(19): 194703. doi: 10.7498/aps.63.194703
    [7] 陈亮, 郭仁拥, 塔娜. 双出口房间内疏散行人流的仿真和实验研究. 物理学报, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [8] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [9] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究. 物理学报, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [10] 张阿漫, 肖巍, 王诗平, 程潇欧. 不同沙粒底面下气泡脉动特性实验研究. 物理学报, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [11] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究. 物理学报, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [12] 王诗平, 张阿漫, 刘云龙, 吴超. 圆形破口附近气泡动态特性实验研究. 物理学报, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [13] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [14] 王诗平, 张阿漫, 刘云龙, 姚熊亮. 气泡与弹性膜的耦合效应数值模拟. 物理学报, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [15] 王公堂, 刘秀喜. 镓铝双质掺杂提高晶闸管性能的机理研究. 物理学报, 2010, 59(3): 1964-1969. doi: 10.7498/aps.59.1964
    [16] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究. 物理学报, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [17] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究. 物理学报, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [18] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [19] 张建民, 徐可为. 银和铜膜中异常晶粒生长和织构变化的实验研究. 物理学报, 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
    [20] 高 波, 张寒虹, 张 弛. 水中高压放电气泡的实验研究. 物理学报, 2003, 52(7): 1714-1719. doi: 10.7498/aps.52.1714
计量
  • 文章访问数:  5733
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-08
  • 修回日期:  2016-11-26
  • 刊出日期:  2017-02-05

/

返回文章
返回