搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质

宋庆功 赵俊普 顾威风 甄丹丹 郭艳蕊 李泽朋

引用本文:
Citation:

基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质

宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋

Ductile and electronic properties of La-doped gamma-TiAl systems based on density functional theory

Song Qing-Gong, Zhao Jun-Pu, Gu Wei-Feng, Zhen Dan-Dan, Guo Yan-Rui, Li Ze-Peng
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法,计算研究了La替位Ti或Al且掺杂浓度分别为1.85 at.%,2.78 at.%,4.17 at.%,6.25 at.%,8.33 at.%,12.5 at.%的-TiAl合金的晶体结构、稳定性和延性等性质.结果显示,杂质La浓度x12.5 at.%,各个体系均具有较好的能量稳定性,即在一定条件下它们是可以实验制备的,且掺杂合金体系的密度4.6 gcm-3.La掺杂引起晶格参量变化进而导致合金体系的轴比发生变化.La的低浓度(x6.25 at.%)掺杂使合金体系的轴比相较纯-TiAl更接近于1,这对于改善材料的延性极为有利,其中Ti11LaAl12体系的轴比最接近于1,预报其延性最佳.通过对比Ti11LaAl12和Ti12Al12体系的布居数、电荷密度和电子态密度,发现Ti11LaAl12体系延性改善的电子因素为:掺杂使体系内Al(Ti)原子轨道上的电子重新分布,Ti-d轨道和Al-p轨道的电子数均减小,可被p-d杂化轨道局域化的电子数减小,p-d轨道杂化键强度降低,从而使位错移动的阻力减少,延性得以明显改善.电子重新分布改变了部分化学键的性质,部分AlTi共价键转化为AlLa离子键,部分TiTi共价键转化为TiLa金属键,它们的共价性及方向性明显降低,材料金属性增强.在掺杂体系中AlAl键的平均强度减弱,AlTi键和TiTi键的平均强度增强,三者的强度差异明显减小,晶体结构的各向异性程度降低.
    Because of the low density, high specific strength and excellent performance at high temperature, -TiAl based alloy has become a new generation of materials in the aeronautic field. However, its poor ductility at room temperature set a limitation to its wide applications. In this paper, the crystal structures, stabilities and ductilities of La-doped -TiAl systems are investigated by using first principles method based on density functional theory, in which Ti or Al is substituted by La and the impurity content values are 1.85 at.%, 2.78 at.%, 4.17 at.%, 6.25 at.%, 8.33 at.% and 12.5 at.%, respectively. The results show that all of the La-doped alloys have good energy stabilities, namely they can be prepared experimentally, when the impurity concentration x of system is less than or equal to 12.5 at.%. And the density of the La-doped system is less than 4.6 gcm-3. La doping induces the lattice parameters and the axial ratio of the alloy system to change. The axial ratio of La-doped system with low impurity concentration (x6.25 at.%) is closer to 1, which is very beneficial to improving the ductility of the materials. It is predicted that the system Ti11LaAl12 would have the best ductility among those of the investigated systems, for its axial ratio is the closest to 1. The electronic effect about the ductility of La-doped system is discussed through the comparisons of the populations, charge densities and densities between the states of systems Ti11LaAl12 and Ti12Al12. It is found that the system Ti11LaAl12 presents a state of electron redistribution in valence electron orbitals of Al and Ti due to an atom of titanium substituted with that of lanthanum. The charge numbers of Ti-d and Al-p orbitals and the numbers of electrons can be delocalized by reducing the p-d orbital hybridization. Thus, the intensity of p-d orbital hybridization is weakened, the resistance of dislocation movement is reduced, and the ductility of TiAl systems can be improved. Actually, the new electron redistribution shows different properties of some chemical bonds, in which some of covalent AlTi bonds are replaced by ionic AlLa bonds and some of covalent TiTi bonds are replaced by metallic TiLa bonds. Therefore, the covalent and directional properties of chemical bonds are reduced distinctly while the metallic properties of materials are strengthened. The average intensity of AlAl bonds decreases and those of AlTi and TiTi bonds are increased in the La-doped -TiAl system (Ti11LaAl12). As a result, the differences between the three kinds of chemical bonds diminish and the degree of isotropy of the crystal structure increases, which can greatly improve the ductility of -TiAl alloy.
      通信作者: 宋庆功, qgsong@cauc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11304380)和中央高校基本科研业务费专项资金(批准号:3122014K001)资助的课题.
      Corresponding author: Song Qing-Gong, qgsong@cauc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304380) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3122014K001).
    [1]

    Castillo-Rodriguez M, No M L, Jimenez J A, Ruano O A, Juan J S 2016 Acta Mater. 103 46

    [2]

    Bewlay B P, Nag S, Suzuki A, Weimer M J 2016 Mater. High Temp. 33 549

    [3]

    Qian J H, Qi X Z 2002 Chin. J. Rare Metal. 26 477 (in Chinese) [钱九红, 祁学忠 2002 稀有金属 26 477]

    [4]

    Pollock T M 2016 Nat. Mater. 15 809

    [5]

    Kawabta T, Tamura T, Izumi O 1993 Metall. Trans. A 24 141

    [6]

    Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese) [宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰 2016 物理学报 65 046102]

    [7]

    Yamaguchi M, Ito K 2000 Acta Mater. 48 307

    [8]

    Kawabata T, Izumi O 1987 Philos. Mag. A 55 823

    [9]

    Huang S C, Hall E L 1991 Acta Metall. Mater. 39 1053

    [10]

    Pu Z J, Shi J D, Zou D S, Zhong Z Y 1993 Acta Metall. Sin. 29 31 (in Chinese) [蒲忠杰, 石建东, 邹敦叙, 仲增墉 1993 金属学报 29 31]

    [11]

    10+ Chen G, Peng Y B, Zheng G, Qi Z X, Wang M Z, Yu H C, Dong C L, Liu C T 2016 Nat. Mater. 15 876

    [12]

    Kawabata T, Takezono Y, Kanai T, O Izumi 1988 Acta Metall. Mater. 36 963

    [13]

    Song X P, Chen G L 2002 Acta Metall. Sin. 38 583 (in Chinese) [宋西平, 陈国良 2002 金属学报 38 583]

    [14]

    Yang R 2015 Acta Metall. Sin. 51 129 (in Chinese) [杨锐 2015 金属学报 51 129]

    [15]

    Hu H, Wu X Z, Wang R, Li W G, Liu Q 2016 J. Alloys Compd. 658 689

    [16]

    Yang Z J, Sun H L, Huang Z W, Zhu D G, Wang L H 2015 Mater. Rev.: Rev. 29 85 (in Chinese) [杨镇骏, 孙红亮, 黄泽文, 朱德贵, 王良辉 2015 材料导报:综述篇 29 85]

    [17]

    Xu F S, Geng H R, Wang S R 2009 Rare Metal. Mat. Eng. 38 361 (in Chinese) [徐福松, 耿浩然, 王守仁 2009 稀有金属材料与工程 38 361]

    [18]

    Hadi M, Meratian M, Shafyei A 2015 J. Alloys Compd. 618 27

    [19]

    Chen S Q, Qu X H, Lei C M, Huang B Y 1994 Acta Metall. Sin. 30 20 (in Chinese) [陈仕奇, 曲选辉, 雷长明, 黄伯云 1994 金属学报 30 20]

    [20]

    Greenberg B A, Antonov O V, Indenbaum V N, Karkin L E, Notkin A B, Ponomarev M V, Smirnov L V 1991 Acta Metall. Mater. 39 233

    [21]

    Morinaga M, Saito J, Yukawa N, Adachi H 1990 Acta Metall. Mater. 38 25

    [22]

    Eberhart M E, Clougherty D P, Maclaren J M 1993 Philos. Mag. B 68 455

    [23]

    Qin Y H, Qiao Y J 2015 J. Harbin Inst. Technol. 47 123 (in Chinese) [秦永和, 乔英杰 2015 哈尔滨工业大学学报 47 123]

    [24]

    Paul R, Katherine C E, Philip D F A, Casey F, Malia B W, Aurelio M, Matthias Z, Sorelle A F, Joshua S, Alexander J N 2016 Nature 533 73

    [25]

    Song Q G 2004 Chin. Sci. Bull. 49 210

    [26]

    Chen G L, Lin J P 1999 Physicalmetallurgy Basis of Ordered Intermetallic Compound Structure Materials (Beijing: Metallurgical Industry Press) p285 (in Chinese) [陈国良, 林均品 1999 有序金属间化合物结构材料物理金属学基础 (北京: 冶金工业出版社) 第285页]

    [27]

    Shang J X, Yu T B 2009 Acta Phys. Sin. 58 1179 (in Chinese) [尚家香, 于潭波 2009 物理学报 58 1179]

    [28]

    Pugh S F 1954 Philos. Mag. 45 823

    [29]

    Fu C L 1990 J. Mater. Res. 5 971

    [30]

    Huang Y Y, Wu W M, Deng W, Zhong X P, Xiong L Y, Cao M Z, Long Q W 2000 Chin. J. Nonferr. Met. 10 796 (in Chinese) [黄宇阳, 吴伟明, 邓文, 钟夏平, 熊良钺, 曹名洲, 龙期威 2000 中国有色金属学报 10 796]

    [31]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese) [党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [32]

    Liu X K, Liu Y, Zheng Z, Dai J L 2010 Rare Metal. Mat. Eng. 39 832 (in Chinese) [刘显坤, 刘颖, 郑州, 代君龙 2010 稀有金属材料与工程 39 832]

  • [1]

    Castillo-Rodriguez M, No M L, Jimenez J A, Ruano O A, Juan J S 2016 Acta Mater. 103 46

    [2]

    Bewlay B P, Nag S, Suzuki A, Weimer M J 2016 Mater. High Temp. 33 549

    [3]

    Qian J H, Qi X Z 2002 Chin. J. Rare Metal. 26 477 (in Chinese) [钱九红, 祁学忠 2002 稀有金属 26 477]

    [4]

    Pollock T M 2016 Nat. Mater. 15 809

    [5]

    Kawabta T, Tamura T, Izumi O 1993 Metall. Trans. A 24 141

    [6]

    Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese) [宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰 2016 物理学报 65 046102]

    [7]

    Yamaguchi M, Ito K 2000 Acta Mater. 48 307

    [8]

    Kawabata T, Izumi O 1987 Philos. Mag. A 55 823

    [9]

    Huang S C, Hall E L 1991 Acta Metall. Mater. 39 1053

    [10]

    Pu Z J, Shi J D, Zou D S, Zhong Z Y 1993 Acta Metall. Sin. 29 31 (in Chinese) [蒲忠杰, 石建东, 邹敦叙, 仲增墉 1993 金属学报 29 31]

    [11]

    10+ Chen G, Peng Y B, Zheng G, Qi Z X, Wang M Z, Yu H C, Dong C L, Liu C T 2016 Nat. Mater. 15 876

    [12]

    Kawabata T, Takezono Y, Kanai T, O Izumi 1988 Acta Metall. Mater. 36 963

    [13]

    Song X P, Chen G L 2002 Acta Metall. Sin. 38 583 (in Chinese) [宋西平, 陈国良 2002 金属学报 38 583]

    [14]

    Yang R 2015 Acta Metall. Sin. 51 129 (in Chinese) [杨锐 2015 金属学报 51 129]

    [15]

    Hu H, Wu X Z, Wang R, Li W G, Liu Q 2016 J. Alloys Compd. 658 689

    [16]

    Yang Z J, Sun H L, Huang Z W, Zhu D G, Wang L H 2015 Mater. Rev.: Rev. 29 85 (in Chinese) [杨镇骏, 孙红亮, 黄泽文, 朱德贵, 王良辉 2015 材料导报:综述篇 29 85]

    [17]

    Xu F S, Geng H R, Wang S R 2009 Rare Metal. Mat. Eng. 38 361 (in Chinese) [徐福松, 耿浩然, 王守仁 2009 稀有金属材料与工程 38 361]

    [18]

    Hadi M, Meratian M, Shafyei A 2015 J. Alloys Compd. 618 27

    [19]

    Chen S Q, Qu X H, Lei C M, Huang B Y 1994 Acta Metall. Sin. 30 20 (in Chinese) [陈仕奇, 曲选辉, 雷长明, 黄伯云 1994 金属学报 30 20]

    [20]

    Greenberg B A, Antonov O V, Indenbaum V N, Karkin L E, Notkin A B, Ponomarev M V, Smirnov L V 1991 Acta Metall. Mater. 39 233

    [21]

    Morinaga M, Saito J, Yukawa N, Adachi H 1990 Acta Metall. Mater. 38 25

    [22]

    Eberhart M E, Clougherty D P, Maclaren J M 1993 Philos. Mag. B 68 455

    [23]

    Qin Y H, Qiao Y J 2015 J. Harbin Inst. Technol. 47 123 (in Chinese) [秦永和, 乔英杰 2015 哈尔滨工业大学学报 47 123]

    [24]

    Paul R, Katherine C E, Philip D F A, Casey F, Malia B W, Aurelio M, Matthias Z, Sorelle A F, Joshua S, Alexander J N 2016 Nature 533 73

    [25]

    Song Q G 2004 Chin. Sci. Bull. 49 210

    [26]

    Chen G L, Lin J P 1999 Physicalmetallurgy Basis of Ordered Intermetallic Compound Structure Materials (Beijing: Metallurgical Industry Press) p285 (in Chinese) [陈国良, 林均品 1999 有序金属间化合物结构材料物理金属学基础 (北京: 冶金工业出版社) 第285页]

    [27]

    Shang J X, Yu T B 2009 Acta Phys. Sin. 58 1179 (in Chinese) [尚家香, 于潭波 2009 物理学报 58 1179]

    [28]

    Pugh S F 1954 Philos. Mag. 45 823

    [29]

    Fu C L 1990 J. Mater. Res. 5 971

    [30]

    Huang Y Y, Wu W M, Deng W, Zhong X P, Xiong L Y, Cao M Z, Long Q W 2000 Chin. J. Nonferr. Met. 10 796 (in Chinese) [黄宇阳, 吴伟明, 邓文, 钟夏平, 熊良钺, 曹名洲, 龙期威 2000 中国有色金属学报 10 796]

    [31]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese) [党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [32]

    Liu X K, Liu Y, Zheng Z, Dai J L 2010 Rare Metal. Mat. Eng. 39 832 (in Chinese) [刘显坤, 刘颖, 郑州, 代君龙 2010 稀有金属材料与工程 39 832]

  • [1] 杨子豪, 刘刚, 吴木生, 石晶, 欧阳楚英, 杨慎博, 徐波. 氢空位簇调控锗烷的电子结构和分子掺杂. 物理学报, 2023, 72(12): 127101. doi: 10.7498/aps.72.20230170
    [2] 王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣. 二维Janus原子晶体的电子性质. 物理学报, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [5] 宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰. 杂质浓度对Zr替位掺杂-TiAl合金的结构延性和电子性质的影响. 物理学报, 2016, 65(4): 046102. doi: 10.7498/aps.65.046102
    [6] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟. 物理学报, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [7] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究. 物理学报, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [8] 阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪. BnY(n=1–11)团簇的结构和电子性质. 物理学报, 2014, 63(24): 243101. doi: 10.7498/aps.63.243101
    [9] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究. 物理学报, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [10] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [11] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [12] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [13] 张秀荣, 李扬, 杨星. WnNim(n+m=8)团簇结构与电子性质的理论研究. 物理学报, 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [14] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [15] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [16] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质. 物理学报, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [17] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [18] 毛华平, 王红艳, 朱正和, 唐永建. AunY(n=1—9)掺杂团簇的结构和电子性质研究. 物理学报, 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
    [19] 伏广才, 李明星, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质. 物理学报, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
    [20] 徐 敏, 沈 雯, 高 瞻, 赵良磊, 姜 蓓, 杨 磊, 张澜庭. La0.4FeCo3Sb12晶体结构的x射线和电子衍射表征. 物理学报, 2005, 54(7): 3302-3306. doi: 10.7498/aps.54.3302
计量
  • 文章访问数:  5558
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-09
  • 修回日期:  2016-12-10
  • 刊出日期:  2017-03-05

/

返回文章
返回