搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风彩虹(2015)高分辨率数值模拟及涡旋Rossby波特征分析

焦亚音 冉令坤 李娜 高守亭 周冠博

引用本文:
Citation:

台风彩虹(2015)高分辨率数值模拟及涡旋Rossby波特征分析

焦亚音, 冉令坤, 李娜, 高守亭, 周冠博

High resolution numerical simulation of typhoon Mujigae (2015) and analysis of vortex Rossby waves

Jiao Ya-Yin, Ran Ling-Kun, Li Na, Gao Shou-Ting, Zhou Guan-Bo
PDF
导出引用
  • 采用中尺度数值预报模式对2015年22号台风彩虹进行高分辨率的数值模拟,成功地模拟出台风彩虹的移动路径、强度和降水分布,尤其是在台风登陆前后,模拟结果与实况比较接近. 以此为基础,利用模式输出资料,分析台风的动力、热力精细结构和台风雨带的宏观特征. 眼墙处具有低层径向入流、高层径向出流的动力配置. 在眼墙附近,同时存在切向风速高值区、垂直上升区、正温度距平区,并随高度向外侧倾斜,雷达回波较强,对流系统比较深厚. 次级雨带、主雨带和远距离雨带的雷达回波相对较弱,对流系统垂直厚度略小. 再利用尺度分离方法,得到涡旋Rossby波的扰动场资料,进一步分析涡旋Rossby波的特征. 1波、2波同时朝切向和径向传播,1波的振幅明显大于2波. 研究结果表明,1波、2波正涡度扰动对应强雷达回波,存在强对流活动. 降水区上空的垂直涡度扰动呈上正下负的配置,与水平散度扰动的垂直配置相似时,会加强低层辐合和高层辐散,有很强的垂直上升运动,有利于对流系统发展,降水增强. 1 波、2波扰动的动力配置影响了对流系统的发展,并对降水强度和分布有一定的诊断作用.
    Mesoscale weather research and forecasting model with high resolution is used to investigate the landfall process of typhoon Mujigae (2015). The simulation well reproduces the path, intensity and rainfall of the typhoon, especially before and after the landfall. The fine thermal and dynamical structures of the typhoon Mujigae and its macroscopic characteristics of rain bands are examined with the simulation output. The rain band regions from the eyewall outward are composed of mixing rain band, secondary rain band, principal rain band and distant rain band. The lower-level inflow and upper-level outflow are observed in the eyewall. The maximum tangential wind, strong updraft and positive temperature anomaly are located in the eyewall and tilted outward with height. The convective systems in the eyewall with high radar reflectivity are much deeper than those in the principal rain band, secondary rain band and distant rain band.In order to analyze the vortex Rossby waves, the fast Fourier transform is performed to decompose the model output variables into perturbations with different wavenumbers. The vorticity perturbations in the wavenumbers 1 and 2 have significant features in the azimuthal and radial propagation. The amplitude of wavenumber 1 is larger than that of wavenumber 2, while the wavenumber 2 propagates much faster than the wavenumber 1 both in azimuthal and radial directions. The waves propagate with a speed less than 10 m/s, which are in consistent with the magnitudes of the radial velocities in spiral rain band. The amplitude of vortex Rossby waves decreases quickly beyond the stagnation radius which is about 90 km from the cyclone center. For the perturbations of wavenumbers 1 and 2, there are some intrinsic relations among the vertical vorticity, divergence and vertical velocity. The positive values of vertical vorticity with the two wavenumbers are associated with the strong reflectivity indicating deep convections. When the dipole patterns of positive vorticity in the upper level and negative vorticity in the lower level over the rainfall region are coupled with the pattern of divergence, the upper-level divergence and lower-level convergence are promoted. Then, updrafts are enhanced, which is favorable for the development of convective system and the increase of precipitation. On the other hand, the updrafts can be weakened in two cases: i) the vertical distribution of negative vorticity in the upper level and positive vorticity in the lower level is similar to the divergence distribution; ⅱ) the vertical distribution of vorticity is opposite to that of divergence. Consequently, the convective systems are inhibited and less rainfall is produced. The dynamical structures of vortex Rossby waves with wavenumbers 1 and 2 affect the development of deep convective system and precipitation in the typhoon Mujigae.
      通信作者: 冉令坤, rlk@mail.iap.ac.cn
    • 基金项目: 国家基础研究项目(批准号:2015CB452804)、中国科学院重点部署项目(批准号:KZZD-EW-05)、 北京自然科学基金(批准号:8142035)和国家自然科学基金(批准号:41575065,41405049,91437215)资助的课题.
      Corresponding author: Ran Ling-Kun, rlk@mail.iap.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB452804), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the Natural Science Foundation of Beijing, China (Grant No. 8142035), and the National Natural Science Foundation of China (Grant Nos. 41575065, 41405049, 91437215).
    [1]

    Duan Y H 2015 Advances in Earth Science 30 847 (in Chinese) [端义宏 2015 地球科学进展 30 847]

    [2]

    Wexler H 1947 Ann. N Y. Acad Sci. 48 821

    [3]

    Willoughby H E 1977 J. Atmos. Sci. 34 1028

    [4]

    Shimazu Y 1997 J. Metror. Soc. Japan 75 67

    [5]

    Sawada M, Iwasaki T 2010 J. Atmos. Sci. 67 84

    [6]

    MacDonald N J 1968 Tellus 20 138

    [7]

    Guinn T, Schubert W H 1993 J. Atmos. Sci 50 3380

    [8]

    Montgomery M T, Kallenbach R J 1997 Quart. J. Roy. Meteor. Soc. 123 436

    [9]

    Montgomery M T, Enagonio J 1998 J. Atmos. Sci. 55 3176

    [10]

    Moller J D, Montgomery M T 1999 J. Atmos. Sci. 56 1674

    [11]

    Reasor P D, Montgomery M T 2000 Mon. Wea. Rev. 128 1653

    [12]

    Chen Y S, Yau M K 2001 J. Atmos. Sci. 58 2128

    [13]

    Chen Y S, Brunet G, Yau M K 2003 J. Atmos. Sci. 60 1239

    [14]

    Wang Y Q 2001 Mon. Wea. Rev. 129 1370

    [15]

    Wang Y Q 2002 J. Atmos. Sci. 59 1213

    [16]

    Wang Y Q 2002 J. Atmos. Sci. 59 1239

    [17]

    Wang Y Q 2008 J. Atmos. Sci. 65 1158

    [18]

    Hall J D, Xue M, Ran L K, Leslie L M 2013 J. Atmos. Sci. 70 163

    [19]

    Corbosiero K L, Molinari J, Aiyyer A R, Black M L 2006 Mon. Wea. Rev. 134 3073

    [20]

    MoonY, Nolan D S 2015 J. Atmos. Sci. 72 164

    [21]

    MoonY, Nolan D S 2015 J. Atmos. Sci. 72 191

    [22]

    Yu Z H 2002 Acta Meteorologica Sinica 60 502 (in Chinese) [余志豪 2002 气象学报 60 502]

    [23]

    Zhong K, Kang J W, Yu Q P 2002 Acta Meteorologica Sinica 60 436 (in Chinese) [钟科, 康建伟, 余清平 2002 气象学报 60 436]

    [24]

    Xu X D, Zhang S J, Chen L S, Wei F Y 2004 Chinese J. Geophys 47 33 (in Chinese) [徐祥德, 张胜军, 陈联寿, 魏凤英 2004 地球物理学报 47 33]

    [25]

    Zhu P J, Zheng Y G, Hong Q, Tao Z Y 2005 Chin. Sci. Bull. 50 486 (in Chinese) [朱佩君, 郑永光, 洪庆, 陶祖钰 2005 科学通报 50 486]

    [26]

    Shen X Y, Ni Y Q, Shen T L, Ding Y H, He Z 2005 Chinese Journal of Atmospheric Sciences 29 854 (in Chinese) [沈新勇, 倪允琪, 沈桐立, 丁一汇, 贺哲 2005 大气科学 29 854]

    [27]

    Shen X Y 2006 Scientia Meteorologica Sinica 26 355 (in Chinese) [沈新勇 2006 气象科学 26 355]

    [28]

    Shen X Y, Ming J, Fang K 2007 Scientia Meteorological Sinica 27 176 (in Chinese) [沈新勇, 明杰, 方珂 2007 气象科学 27 176]

    [29]

    Shen X Y, Liu J, Qin N N, Zhu L 2012 Trans. Atmos. Sci. 35 257 (in Chinese) [沈新勇, 刘佳, 秦南南, 朱琳 2012 大气科学学报 35 257]

    [30]

    Lu H C, Kang J W, Kou Z, Cheng H Y, Zhong W 2004 Progress in Natural Science 14 514 (in Chinese) [陆汉城, 康健伟, 寇正, 程红艳, 钟玮 2004 自然科学进展 14 514]

    [31]

    Lu H C, Zhong W, Fei J F, Kou Z 2010 Scientia Meteorologica Sinica 30 605 (in Chinese) [陆汉城, 钟玮, 费建芳, 寇正 2010 气象科学 30 605]

    [32]

    Lu H C, Zhong K, Zhang D L 2002 Chinese Journal of Atmospheric Sciences 26 83 (in Chinese) [陆汉城, 钟科, 张大林 2002 大气科学 26 83]

    [33]

    Lu H C, Zhong W, Zhang D L 2007 Chinese Journal of Atmospheric Sciences 31 1140 (in Chinese) [陆汉城, 钟玮, 张大林 2007 大气科学 31 1140]

    [34]

    Kang J W, Lu H C, Zhong K, Zhang S B, Han W B 2007 Journal of Tropical Meteorology 23 21 (in Chinese) [康建伟, 陆汉城, 钟科, 张少波, 韩文博 2007 热带气象学报 23 21]

    [35]

    Zhong W, Zhang D L, Lu H C 2009 J. Atmos. Sci. 66 3366

    [36]

    Zhang Y, Yuan Z P, Chen J P, Yu H 2006 Meteorology and Disaster Reducing Research 29 1 (in Chinese) [张瑛, 袁子鹏, 陈建萍, 余晖 2006 气象与减灾研究 29 1]

    [37]

    Wang Y, Ding Z Y 2008 J. Nanjing Inst. Meteor. 31 352 (in Chinese) [王勇, 丁治英 2008 南京气象学院学报 31 352]

    [38]

    Min Y, Shen T L, Zhu W J, Yan J 2010 Trans. Atmos. Sci. 33 227 (in Chinese) [闵颖, 沈桐立, 朱伟军, 严娟 2010 大气科学学报 33 227]

    [39]

    Li Q Q, Wang Y Q 2012 J. Atmos. Sci. 69 997

    [40]

    Li Q Q, Wang Y Q 2012 Mon.Wea. Rev. 140 2782

    [41]

    Houze R A 2010 Mon. Wea. Rev. 138 293

    [42]

    Lin Q, Shen X Y, Gao S T 2014 Climatic and Environmental Research 19 536 (in Chinese) [林青, 沈新勇, 高守亭 2014 气候与环境研究 19 536]

    [43]

    Kuo H C, Williams R T, Chen J H 1999 J. Atmos. Sci. 56 1659

    [44]

    Lamb H 1932 Hydrodynamics (Oxford: Cambridge University Press) p732

    [45]

    Li Q Q 2013 Ph. D. Dissertation (Beijing: Chinese Academy of Meteorological Sciences) (in Chinese) [李青青 2013 博士学位论文 (北京:中国气象科学研究院)]

  • [1]

    Duan Y H 2015 Advances in Earth Science 30 847 (in Chinese) [端义宏 2015 地球科学进展 30 847]

    [2]

    Wexler H 1947 Ann. N Y. Acad Sci. 48 821

    [3]

    Willoughby H E 1977 J. Atmos. Sci. 34 1028

    [4]

    Shimazu Y 1997 J. Metror. Soc. Japan 75 67

    [5]

    Sawada M, Iwasaki T 2010 J. Atmos. Sci. 67 84

    [6]

    MacDonald N J 1968 Tellus 20 138

    [7]

    Guinn T, Schubert W H 1993 J. Atmos. Sci 50 3380

    [8]

    Montgomery M T, Kallenbach R J 1997 Quart. J. Roy. Meteor. Soc. 123 436

    [9]

    Montgomery M T, Enagonio J 1998 J. Atmos. Sci. 55 3176

    [10]

    Moller J D, Montgomery M T 1999 J. Atmos. Sci. 56 1674

    [11]

    Reasor P D, Montgomery M T 2000 Mon. Wea. Rev. 128 1653

    [12]

    Chen Y S, Yau M K 2001 J. Atmos. Sci. 58 2128

    [13]

    Chen Y S, Brunet G, Yau M K 2003 J. Atmos. Sci. 60 1239

    [14]

    Wang Y Q 2001 Mon. Wea. Rev. 129 1370

    [15]

    Wang Y Q 2002 J. Atmos. Sci. 59 1213

    [16]

    Wang Y Q 2002 J. Atmos. Sci. 59 1239

    [17]

    Wang Y Q 2008 J. Atmos. Sci. 65 1158

    [18]

    Hall J D, Xue M, Ran L K, Leslie L M 2013 J. Atmos. Sci. 70 163

    [19]

    Corbosiero K L, Molinari J, Aiyyer A R, Black M L 2006 Mon. Wea. Rev. 134 3073

    [20]

    MoonY, Nolan D S 2015 J. Atmos. Sci. 72 164

    [21]

    MoonY, Nolan D S 2015 J. Atmos. Sci. 72 191

    [22]

    Yu Z H 2002 Acta Meteorologica Sinica 60 502 (in Chinese) [余志豪 2002 气象学报 60 502]

    [23]

    Zhong K, Kang J W, Yu Q P 2002 Acta Meteorologica Sinica 60 436 (in Chinese) [钟科, 康建伟, 余清平 2002 气象学报 60 436]

    [24]

    Xu X D, Zhang S J, Chen L S, Wei F Y 2004 Chinese J. Geophys 47 33 (in Chinese) [徐祥德, 张胜军, 陈联寿, 魏凤英 2004 地球物理学报 47 33]

    [25]

    Zhu P J, Zheng Y G, Hong Q, Tao Z Y 2005 Chin. Sci. Bull. 50 486 (in Chinese) [朱佩君, 郑永光, 洪庆, 陶祖钰 2005 科学通报 50 486]

    [26]

    Shen X Y, Ni Y Q, Shen T L, Ding Y H, He Z 2005 Chinese Journal of Atmospheric Sciences 29 854 (in Chinese) [沈新勇, 倪允琪, 沈桐立, 丁一汇, 贺哲 2005 大气科学 29 854]

    [27]

    Shen X Y 2006 Scientia Meteorologica Sinica 26 355 (in Chinese) [沈新勇 2006 气象科学 26 355]

    [28]

    Shen X Y, Ming J, Fang K 2007 Scientia Meteorological Sinica 27 176 (in Chinese) [沈新勇, 明杰, 方珂 2007 气象科学 27 176]

    [29]

    Shen X Y, Liu J, Qin N N, Zhu L 2012 Trans. Atmos. Sci. 35 257 (in Chinese) [沈新勇, 刘佳, 秦南南, 朱琳 2012 大气科学学报 35 257]

    [30]

    Lu H C, Kang J W, Kou Z, Cheng H Y, Zhong W 2004 Progress in Natural Science 14 514 (in Chinese) [陆汉城, 康健伟, 寇正, 程红艳, 钟玮 2004 自然科学进展 14 514]

    [31]

    Lu H C, Zhong W, Fei J F, Kou Z 2010 Scientia Meteorologica Sinica 30 605 (in Chinese) [陆汉城, 钟玮, 费建芳, 寇正 2010 气象科学 30 605]

    [32]

    Lu H C, Zhong K, Zhang D L 2002 Chinese Journal of Atmospheric Sciences 26 83 (in Chinese) [陆汉城, 钟科, 张大林 2002 大气科学 26 83]

    [33]

    Lu H C, Zhong W, Zhang D L 2007 Chinese Journal of Atmospheric Sciences 31 1140 (in Chinese) [陆汉城, 钟玮, 张大林 2007 大气科学 31 1140]

    [34]

    Kang J W, Lu H C, Zhong K, Zhang S B, Han W B 2007 Journal of Tropical Meteorology 23 21 (in Chinese) [康建伟, 陆汉城, 钟科, 张少波, 韩文博 2007 热带气象学报 23 21]

    [35]

    Zhong W, Zhang D L, Lu H C 2009 J. Atmos. Sci. 66 3366

    [36]

    Zhang Y, Yuan Z P, Chen J P, Yu H 2006 Meteorology and Disaster Reducing Research 29 1 (in Chinese) [张瑛, 袁子鹏, 陈建萍, 余晖 2006 气象与减灾研究 29 1]

    [37]

    Wang Y, Ding Z Y 2008 J. Nanjing Inst. Meteor. 31 352 (in Chinese) [王勇, 丁治英 2008 南京气象学院学报 31 352]

    [38]

    Min Y, Shen T L, Zhu W J, Yan J 2010 Trans. Atmos. Sci. 33 227 (in Chinese) [闵颖, 沈桐立, 朱伟军, 严娟 2010 大气科学学报 33 227]

    [39]

    Li Q Q, Wang Y Q 2012 J. Atmos. Sci. 69 997

    [40]

    Li Q Q, Wang Y Q 2012 Mon.Wea. Rev. 140 2782

    [41]

    Houze R A 2010 Mon. Wea. Rev. 138 293

    [42]

    Lin Q, Shen X Y, Gao S T 2014 Climatic and Environmental Research 19 536 (in Chinese) [林青, 沈新勇, 高守亭 2014 气候与环境研究 19 536]

    [43]

    Kuo H C, Williams R T, Chen J H 1999 J. Atmos. Sci. 56 1659

    [44]

    Lamb H 1932 Hydrodynamics (Oxford: Cambridge University Press) p732

    [45]

    Li Q Q 2013 Ph. D. Dissertation (Beijing: Chinese Academy of Meteorological Sciences) (in Chinese) [李青青 2013 博士学位论文 (北京:中国气象科学研究院)]

  • [1] 张廷龙, 余海, 陈阳, 赵小平, 陈洁, 文中海, 李哲, 蒋贤玲, 张茂华. 1907号台风“韦帕”登陆期间眼壁区的垂直电场探空观测. 物理学报, 2021, 70(13): 139201. doi: 10.7498/aps.70.20202183
    [2] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究. 物理学报, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [3] 李启华, 陆汉城, 钟玮, 王卫超, 郭兴亮, 袁猛. 双台风条件下水汽的中尺度输送特征与收支诊断. 物理学报, 2018, 67(3): 039201. doi: 10.7498/aps.67.20170455
    [4] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [5] 钟剑, 费建芳, 黄思训, 黄小刚, 程小平. 多参数背景场误差模型在散射计资料台风风场反演中的应用. 物理学报, 2013, 62(15): 159302. doi: 10.7498/aps.62.159302
    [6] 钱郁. 时空调制引起的漫游螺旋波与旅行螺旋波共存现象. 物理学报, 2013, 62(5): 058201. doi: 10.7498/aps.62.058201
    [7] 申茜, 张世轩, 赵俊虎, 汪栩加. 近海台风对中国东部夏季降水的贡献. 物理学报, 2013, 62(18): 189201. doi: 10.7498/aps.62.189201
    [8] 楚艳丽, 王振会, 冉令坤, 郝寿昌. 台风莫拉克(2009)暴雨过程中位势切变形变波作用密度诊断分析和预报应用. 物理学报, 2013, 62(9): 099201. doi: 10.7498/aps.62.099201
    [9] 刘磊, 费建芳, 黄小刚, 程小平. 大气-海浪-海流耦合模式的建立和一次台风过程的初步试验. 物理学报, 2012, 61(14): 149201. doi: 10.7498/aps.61.149201
    [10] 陶建军, 胡向辉. 热带低层弱涡旋中扰动的快速发展及其向中心传播的特征. 物理学报, 2012, 61(16): 169202. doi: 10.7498/aps.61.169202
    [11] 张亮, 黄思训, 杜华栋. 散射计资料对台风海平面气压场的反演和定位的新方法研究. 物理学报, 2011, 60(11): 119202. doi: 10.7498/aps.60.119202
    [12] 张亮, 黄思训, 钟剑, 杜华栋. 基于降雨率的GMF+RAIN模型构建及在台风风场反演中的应用. 物理学报, 2010, 59(10): 7478-7490. doi: 10.7498/aps.59.7478
    [13] 张亮, 张立凤, 吴海燕, 李刚. 正压Rossby波扰动能量. 物理学报, 2010, 59(1): 44-53. doi: 10.7498/aps.59.44
    [14] 周玉淑, 冉令坤. 平流涡度方程及其在2006年Bilis台风分析中的应用. 物理学报, 2010, 59(2): 1366-1377. doi: 10.7498/aps.59.1366
    [15] 崔红, 张书文, 王庆业. 南海对于台风伊布都响应的数值计算. 物理学报, 2009, 58(9): 6609-6615. doi: 10.7498/aps.58.6609
    [16] 陶建军, 李朝奎. 涡旋中双臂形成的物理机制及其演变. 物理学报, 2009, 58(6): 4313-4318. doi: 10.7498/aps.58.4313
    [17] 达朝究, 丑纪范. 缓变地形下Rossby波振幅演变满足的带有强迫项的KdV方程. 物理学报, 2008, 57(4): 2595-2599. doi: 10.7498/aps.57.2595
    [18] 周玉淑, 曹 洁, 高守亭. 有限区域风场分解方法及其在台风SAOMEI研究中的应用. 物理学报, 2008, 57(10): 6654-6665. doi: 10.7498/aps.57.6654
    [19] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解. 物理学报, 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [20] 刘深泉, 陆启韶, 王 琪. 激发介质中螺旋波的波尖运动. 物理学报, 1998, 47(7): 1057-1063. doi: 10.7498/aps.47.1057
计量
  • 文章访问数:  5414
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-12-16
  • 刊出日期:  2017-04-05

/

返回文章
返回