搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.5 T关节磁共振成像超导磁体的设计、制作与测试

杜晓纪 王为民 兰贤辉 李超

引用本文:
Citation:

1.5 T关节磁共振成像超导磁体的设计、制作与测试

杜晓纪, 王为民, 兰贤辉, 李超

Design, fabrication and test of superconducting magnet for 1.5 T dedicated extremity magnetic resonance imaging system

Du Xiao-Ji, Wang Wei-Min, Lan Xian-Hui, Li Chao
PDF
导出引用
  • 磁共振成像(magnetic resonance imaging,MRI)是当今世界上最先进的医学影像技术之一,现阶段MRI技术正朝着成像质量更清晰、功能更强大、效率更高、个体化更强的趋势发展.与全身MRI设备相比,专科型MRI设备具有体积小、重量轻、成本低、病人舒适度高、成像质量高、功能更强等优点.但是关节专用超导MRI系统需要长度方向上被严格限制的超导磁体在160 mm直径球域(diameter sphere volume,DSV)内产生高均匀度的磁场.本文综合考虑了超导线用量、中心磁感应强度和成像区磁场不均匀度等因素,使用0-1规划和遗传算法相结合的方法设计了一种非屏蔽型1.5 T关节MRI超导磁体,该磁体的室温孔径为280 mm,总长度为520 mm,液氦量为30 L,载流区最大磁场为5.48 T,5高斯线范围为径向3.2 m、轴向2.6 m,160 mm DSV的磁场不均匀度设计值为22 ppm,考虑加工误差及冷缩因素,磁体加工完成并经过被动匀场后的预估值为60 ppm.经过绕制、固化、组装、焊接等工序,该磁体已制作完成.经过3次锻炼后成功励磁到1.5 T,经过被动匀场后160 mm DSV的磁场不均匀度达到50 ppm,各项指标均达到设计目标.
    Magnetic resonance imaging (MRI) has been a primary diagnostic technique due to its high imaging quality, noninvasion and non-radiation capacity. However, the application of conventional whole body MRI is restricted by its massive size, high installation and management cost. Dedicated MRI overcomes the shortcomings of whole body MRI and has great importance in medical diagnosis. The challenge is that the design of superconducting magnet for extremity MRI is largely constrained by physiological structure of human body. As a result, a limited longitudinal length with high field homogeneity in a 160 mm diameter sphere volume (DSV) is required for superconducting magnet of extremity MRI. In this article, a non-shielded 1.5 T extremity dedicated superconducting magnet is designed by using both 0-1 integer programming and genetic algorithm and fabricated with a comprehensive consideration of superconductivity wire consumption, central magnetic field intensity and imaging region homogeneity. The NbTi superconducting wire is chosen for coil winding, and copper-to-superconducting ratio of the wire is 1.3. The sizes of cross-section of the bare wire and the insulated wire are 0.75 mm×1.20 mm and 0.83 mm×1.28 mm respectively, and the critical currents at 4.2 K and 5 T are both about 935 A.According to the size constraint of the magnet, we first calculate the current carrying zone of the superconducting coils and divide it into grid elements with parallel current. The size of each grid element is equal to that of the superconducting wire, and the distribution of non-rectangular coils is obtained by using 0-1 integer programming. In order to obtain a higher homogeneity of magnetic field, a reverse current zone is manually created in the wide blank area of the feasible current carrying zone. Using the results above, we then optimize the distribution of coils and build a rectangular model which facilitates the fabrication by using genetic algorithm. The inductance of the magnet is 1.8094 H, the operating current is 402.09 A, the stored energy is 146.27 kJ and the peak magnetic field of current carrying zone is 5.48 T. The calculated peak-to-peak homogeneity in 160 mm DSV is about 22 ppm. Taking into consideration the factors such as mechanical error and cold shrinkage, the estimated homogeneity would reach 60 ppm (peak-to-peak) with passive shimming.The 1.5 T extremity dedicated superconducting magnet is successfully fabricated through a series of processes such as winding, curing, assembly and welding. The prototype magnet has a room temperature bore of 280 mm in diameter and a total length of 520 mm, and the volume of liquid helium vessel is about 30 liters. To reduce the evaporation of liquid helium, a 1.5 Watt two-stage Gifford-McMahon refrigerator is employed to cool the system and maintain the evaporation rate of Helium at zero level. The range of 5 Gauss line of the magnet is 3.2 m in the radial direction and 2.6 m in the axial direction. Moreover, the magnet is magnetized to 1.5 T after being conditioned three times and the measured homogeneity in 160 mm DSV achieves 55 ppm (peak-to-peak) and 3.4 ppm (Vrms) after passive shimming using silicon steel pieces.
      通信作者: 王为民, wmw@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51477168)、国家自然科学基金重点项目(批准号:61531002)、国家重点基础研究发展计划(批准号:2015CB250902)和中国科学院B类先导科技专项培育项目(批准号:XDPB01)资助的课题.
      Corresponding author: Wang Wei-Min, wmw@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51477168), the Key Program of the National Natural Science Foundation of China (Grant No. 61531002), the National Basic Research Program of China (Grant No. 2015CB250902), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB01).
    [1]

    Lvovsky Y, Jarvis P 2005 IEEE Trans. Appl. Supercond. 15 1317

    [2]

    Cosmus T, Parich M 2011 IEEE Trans. Appl. Supercond. 21 2104

    [3]

    Lvovsky Y, Stautner E, Zhang T 2013 Supercond. Sci. Technol. 26 093001

    [4]

    Kitaguchi H, Ozaki O, Miyazaki T, Ayai N, Sato K, Urayama S, Fukuyama H 2010 IEEE Trans. Appl. Supercond. 20 710

    [5]

    Ling J, Voccio J, Hahn S, Kim Y, Song J, Bascunan J, Iwasa Y 2015 IEEE Trans. Appl. Supercond. 25 4601705

    [6]

    Slade R, Parkinson B, Walsh R 2014 IEEE Trans. Appl. Supercond. 24 4400705

    [7]

    Cheng Y, Brown R, Thompson M, Eagan T, Shvartsman S 2004 IEEE Trans. Appl. Supercond. 14 2008

    [8]

    Cavaliere V, Formisano A, Martone R, Primizia M 2000 IEEE Trans. Appl. Supercond. 10 1376

    [9]

    Campelo F, Noguchi S, Igarashi H 2006 IEEE Trans. Appl. Supercond. 16 1316

    [10]

    Tieng Q, Vegh V, Brereton I 2009 IEEE Trans. Appl. Supercond. 19 3645

    [11]

    Du X, Wang W 2014 IEEE Trans. Appl. Supercond. 24 4402104

  • [1]

    Lvovsky Y, Jarvis P 2005 IEEE Trans. Appl. Supercond. 15 1317

    [2]

    Cosmus T, Parich M 2011 IEEE Trans. Appl. Supercond. 21 2104

    [3]

    Lvovsky Y, Stautner E, Zhang T 2013 Supercond. Sci. Technol. 26 093001

    [4]

    Kitaguchi H, Ozaki O, Miyazaki T, Ayai N, Sato K, Urayama S, Fukuyama H 2010 IEEE Trans. Appl. Supercond. 20 710

    [5]

    Ling J, Voccio J, Hahn S, Kim Y, Song J, Bascunan J, Iwasa Y 2015 IEEE Trans. Appl. Supercond. 25 4601705

    [6]

    Slade R, Parkinson B, Walsh R 2014 IEEE Trans. Appl. Supercond. 24 4400705

    [7]

    Cheng Y, Brown R, Thompson M, Eagan T, Shvartsman S 2004 IEEE Trans. Appl. Supercond. 14 2008

    [8]

    Cavaliere V, Formisano A, Martone R, Primizia M 2000 IEEE Trans. Appl. Supercond. 10 1376

    [9]

    Campelo F, Noguchi S, Igarashi H 2006 IEEE Trans. Appl. Supercond. 16 1316

    [10]

    Tieng Q, Vegh V, Brereton I 2009 IEEE Trans. Appl. Supercond. 19 3645

    [11]

    Du X, Wang W 2014 IEEE Trans. Appl. Supercond. 24 4402104

  • [1] 赵地, 赵莉芝, 甘永进, 覃斌毅. 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法. 物理学报, 2022, 71(5): 058701. doi: 10.7498/aps.71.20211761
    [2] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [3] 赵地, 赵莉芝, 甘永进, 覃斌毅. 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211761
    [4] 蒋晓华, 薛芃, 黄伟灿, 李烨. 14 T全身超导MRI磁体的技术挑战 —大规模应用强场超导磁体未来十年的发展目标之一. 物理学报, 2021, 70(1): 018401. doi: 10.7498/aps.70.20202042
    [5] 汪天龙, 邱清泉, 靖立伟, 张小波. 圆形复合式磁控溅射阴极设计及其放电特性模拟研究. 物理学报, 2018, 67(7): 070703. doi: 10.7498/aps.67.20172576
    [6] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [7] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法. 物理学报, 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [8] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析. 物理学报, 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [9] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [10] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [11] 方晟, 吴文川, 应葵, 郭华. 基于非均匀螺旋线数据和布雷格曼迭代的快速磁共振成像方法. 物理学报, 2013, 62(4): 048702. doi: 10.7498/aps.62.048702
    [12] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法. 物理学报, 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [13] 高仁璟, 王国明, 刘书田, 唐祯安. 具有特定频段的左手材料构造与设计优化. 物理学报, 2012, 61(5): 054103. doi: 10.7498/aps.61.054103
    [14] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计. 物理学报, 2012, 61(22): 228701. doi: 10.7498/aps.61.228701
    [15] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计. 物理学报, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [16] 王栋. 滤波-荧光谱仪的优化设计. 物理学报, 2010, 59(1): 443-446. doi: 10.7498/aps.59.443
    [17] 任 驹, 郑建邦, 赵建林. 给体-受体型有机太阳电池光敏层的优化设计. 物理学报, 2007, 56(5): 2868-2872. doi: 10.7498/aps.56.2868
    [18] 陈杰夫, 刘婉秋, 钟万勰. Bloch方程的精细时程积分及其在射频脉冲设计中的应用. 物理学报, 2006, 55(2): 884-890. doi: 10.7498/aps.55.884
    [19] 杨晓苹, 翟宏琛. 双随机相位加密中相息图的优化设计. 物理学报, 2005, 54(4): 1578-1582. doi: 10.7498/aps.54.1578
    [20] 张必达, 王卫东, 宋枭禹, 俎栋林, 吕红宇, 包尚联. 磁共振现代射频脉冲理论在非均匀场成像中的应用. 物理学报, 2003, 52(5): 1143-1150. doi: 10.7498/aps.52.1143
计量
  • 文章访问数:  8544
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-19
  • 修回日期:  2017-08-31
  • 刊出日期:  2017-12-05

/

返回文章
返回