搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应扩散模型在图灵斑图中的应用及数值模拟

张荣培 王震 王语 韩子健

引用本文:
Citation:

反应扩散模型在图灵斑图中的应用及数值模拟

张荣培, 王震, 王语, 韩子健

Application of reaction diffusion model in Turing pattern and numerical simulation

Zhang Rong-Pei, Wang Zhen, Wang Yu, Han Zi-Jian
PDF
导出引用
  • 反应扩散方程模型常被用于描述生物学中斑图的形成.从反应扩散模型出发,理论推导得到Gierer-Meinhardt模型的斑图形成机理,解释了非线性常微分方程系统的稳定常数平衡态在加入扩散项后会发生失稳并产生图灵斑图的过程.通过计算该模型,得到图灵斑图产生的参数条件.数值方法中采用一类有效的高精度数值格式,即在空间离散条件下采用Chebyshev谱配置方法,在时间离散条件下采用紧致隐积分因子方法.该方法结合了谱方法和紧致隐积分因子方法的优点,具有精度高、稳定性好、存储量小等优点.数值模拟表明,在其他条件一定的情况下,系统控制参数κ取不同值对于斑图的产生具有重要的影响,数值结果验证了理论结果.
    Turing proposed a model for the development of patterns found in nature in 1952. Turing instability is known as diffusion-driven instability, which states that a stable spatially homogeneous equilibrium may lose its stability due to the unequal spatial diffusion coefficients. The Gierer-Mainhardt model is an activator and inhibitor system to model the generating mechanism of biological patterns. The reaction-diffusion system is often used to describe the pattern formation model arising in biology. In this paper, the mechanism of the pattern formation of the Gierer-Meinhardt model is deduced from the reactive diffusion model. It is explained that the steady equilibrium state of the nonlinear ordinary differential equation system will be unstable after adding of the diffusion term and produce the Turing pattern. The parameters of the Turing pattern are obtained by calculating the model. There are a variety of numerical methods including finite difference method and finite element method. Compared with the finite difference method and finite element method, which have low order precision, the spectral method can achieve the convergence of the exponential order with only a small number of nodes and the discretization of the suitable orthogonal polynomials. In the present work, an efficient high-precision numerical scheme is used in the numerical simulation of the reaction-diffusion equations. In spatial discretization, we construct Chebyshev differentiation matrices based on the Chebyshev points and use these matrices to differentiate the second derivative in the reaction-diffusion equation. After the spatial discretization, we obtain the nonlinear ordinary differential equations. Since the spectral differential matrix obtained by the spectral collocation method is full and cannot use the fast solution of algebraic linear equations, we choose the compact implicit integration factor method to solve the nonlinear ordinary differential equations. By introducing a compact representation for the spectral differential matrix, the compact implicit integration factor method uses matrix exponential operations sequentially in every spatial direction. As a result, exponential matrices which are calculated and stored have small sizes, as those in the one-dimensional problem. This method decouples the exact evaluation of the linear part from the implicit treatment of the nonlinear reaction terms. We only solve a local nonlinear system at each spatial grid point. This method combines with the advantages of the spectral method and the compact implicit integration factor method, i.e., high precision, good stability, and small storage and so on. Numerical simulations show that it can have a great influence on the generation of patterns that the system control parameters take different values under otherwise identical conditions. The numerical results verify the theoretical results.
      通信作者: 张荣培, rongpeizhang@163.com
    • 基金项目: 国家自然科学基金(批准号:61573008,61703290)、国防科技重点实验室基金(批准号:6142A050202)和辽宁省教育厅基金(批准号:L201604)资助的课题.
      Corresponding author: Zhang Rong-Pei, rongpeizhang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573008, 61703290), the Key Laboratory Fund of National Defense Science and Technology, China (Grant No. 6142A050202), and the Liaoning Provincial Department of Education Fund, China (Grant No. L201604).
    [1]

    Turing A M 1952 Philos. Trans. R. Soc. Lond. B 2 37

    [2]

    Li X Z, Bai Z G, Li Y, Zhao K, He Y F 2013 Acta Phys. Sin. 62 220503 (in Chinese) [李新政, 白占国, 李燕, 赵昆, 贺亚峰 2013 物理学报 62 220503]

    [3]

    Zhang L, Liu S Y 2007 Appl. Math. Mec. 28 1102 (in Chinese) [张丽, 刘三阳 2007 应用数学和力学 28 1102]

    [4]

    Li B, Wang M X 2008 Appl. Math. Mec. 29 749 (in Chinese) [李波, 王明新 2008 应用数学和力学 29 749]

    [5]

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202 (in Chinese) [胡文勇, 邵元智 2014 物理学报 63 238202]

    [6]

    Peng R Wang M 2007 Sci. China A 50 377

    [7]

    Copie F, Conforti M, Kudlinski A, Mussot A, Trillo S 2016 Phys. Rev. Lett. 116 143901

    [8]

    Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout G B, Epstein I R, Fraden S 2014 Proc. Natl. Acad. Sci. USA 111 4397

    [9]

    Lacitignola D, Bozzini B, Frittelli M, Sgura I 2017 Commun. Nonlinear Sci. Numer. Simul. 48 484

    [10]

    Gaskins D K, Pruc E E, Epstein I R, Dolnik M 2016 Phys. Rev. Lett. 117 056001

    [11]

    Zhang R P, Yu X J, Zhu J, Loula A 2014 Appl. Math. Model. 38 1612

    [12]

    Zhang R P, Zhu J, Loula A, Yu X J 2016 J. Comput. Appl. Math. 302 312

    [13]

    Bai Z G, Dong L F, Li Y H, Fan W L 2011 Acta Phys. Sin. 60 118201 (in Chinese) [白占国, 董丽芳, 李永辉, 范伟丽 2011 物理学报 60 118201]

    [14]

    Zhang R, Zhu J, Yu X, Li M, Loula A F D 2017 Appl. Math. Comput. 310 194

    [15]

    Lv Z Q, Zhang L M, Wang Y S 2014 Chin. Phys. B 23 120203

    [16]

    Wang H 2010 Comput. Phys. Commun. 181 325

    [17]

    Hoz F D L, Vadillo F 2013 Commun. Comput. Phys. 14 1001

    [18]

    Nie Q, Zhang Y T, Zhao R 2006 J. Comput. Phys. 214 521

    [19]

    Nie Q, Wan F Y M, Zhang Y T, Liu X F 2008 J. Comput. Phys. 227 5238

    [20]

    Gierer A, Meinhardt H 1972 Kybernetik 12 30

    [21]

    Ward M J, Wei J 2003 J. Nonlinear Sci. 13 209

    [22]

    Wei J, Winter M 2004 J. Math. Pures Appl. 83 433

    [23]

    Li H X 2015 J. Northeast Normal University 3 26 (in Chinese) [李海侠 2015 东北师大学报 3 26]

  • [1]

    Turing A M 1952 Philos. Trans. R. Soc. Lond. B 2 37

    [2]

    Li X Z, Bai Z G, Li Y, Zhao K, He Y F 2013 Acta Phys. Sin. 62 220503 (in Chinese) [李新政, 白占国, 李燕, 赵昆, 贺亚峰 2013 物理学报 62 220503]

    [3]

    Zhang L, Liu S Y 2007 Appl. Math. Mec. 28 1102 (in Chinese) [张丽, 刘三阳 2007 应用数学和力学 28 1102]

    [4]

    Li B, Wang M X 2008 Appl. Math. Mec. 29 749 (in Chinese) [李波, 王明新 2008 应用数学和力学 29 749]

    [5]

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202 (in Chinese) [胡文勇, 邵元智 2014 物理学报 63 238202]

    [6]

    Peng R Wang M 2007 Sci. China A 50 377

    [7]

    Copie F, Conforti M, Kudlinski A, Mussot A, Trillo S 2016 Phys. Rev. Lett. 116 143901

    [8]

    Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout G B, Epstein I R, Fraden S 2014 Proc. Natl. Acad. Sci. USA 111 4397

    [9]

    Lacitignola D, Bozzini B, Frittelli M, Sgura I 2017 Commun. Nonlinear Sci. Numer. Simul. 48 484

    [10]

    Gaskins D K, Pruc E E, Epstein I R, Dolnik M 2016 Phys. Rev. Lett. 117 056001

    [11]

    Zhang R P, Yu X J, Zhu J, Loula A 2014 Appl. Math. Model. 38 1612

    [12]

    Zhang R P, Zhu J, Loula A, Yu X J 2016 J. Comput. Appl. Math. 302 312

    [13]

    Bai Z G, Dong L F, Li Y H, Fan W L 2011 Acta Phys. Sin. 60 118201 (in Chinese) [白占国, 董丽芳, 李永辉, 范伟丽 2011 物理学报 60 118201]

    [14]

    Zhang R, Zhu J, Yu X, Li M, Loula A F D 2017 Appl. Math. Comput. 310 194

    [15]

    Lv Z Q, Zhang L M, Wang Y S 2014 Chin. Phys. B 23 120203

    [16]

    Wang H 2010 Comput. Phys. Commun. 181 325

    [17]

    Hoz F D L, Vadillo F 2013 Commun. Comput. Phys. 14 1001

    [18]

    Nie Q, Zhang Y T, Zhao R 2006 J. Comput. Phys. 214 521

    [19]

    Nie Q, Wan F Y M, Zhang Y T, Liu X F 2008 J. Comput. Phys. 227 5238

    [20]

    Gierer A, Meinhardt H 1972 Kybernetik 12 30

    [21]

    Ward M J, Wei J 2003 J. Nonlinear Sci. 13 209

    [22]

    Wei J, Winter M 2004 J. Math. Pures Appl. 83 433

    [23]

    Li H X 2015 J. Northeast Normal University 3 26 (in Chinese) [李海侠 2015 东北师大学报 3 26]

  • [1] 陆源杉, 肖敏, 万佑红, 丁洁, 蒋海军. 交叉扩散驱动的SI模型空间斑图. 物理学报, 2024, 73(8): 080201. doi: 10.7498/aps.73.20231877
    [2] 孟星柔, 刘若琪, 贺亚峰, 邓腾坤, 刘富成. 反应扩散系统中交叉扩散引发的图灵斑图之间的转变. 物理学报, 2023, 72(19): 198201. doi: 10.7498/aps.72.20230333
    [3] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [4] 刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成. 异质环境下各向异性扩散对图灵斑图的影响. 物理学报, 2022, 71(24): 248201. doi: 10.7498/aps.71.20221294
    [5] 刘倩, 田淼, 范伟丽, 贾萌萌, 马凤娜, 刘富成. 空间周期性驱动对双层耦合反应扩散系统中图灵斑图的影响. 物理学报, 2022, 71(9): 098201. doi: 10.7498/aps.71.20212148
    [6] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [7] 刘雅慧, 董梦菲, 刘富成, 田淼, 王硕, 范伟丽. 双层耦合非对称反应扩散系统中的振荡图灵斑图. 物理学报, 2021, 70(15): 158201. doi: 10.7498/aps.70.20201710
    [8] 刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲. 双层耦合非对称反应扩散系统中的超点阵斑图. 物理学报, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [9] 李新政, 白占国, 李燕. 双层耦合介质中四边形图灵斑图的数值研究. 物理学报, 2019, 68(6): 068201. doi: 10.7498/aps.68.20182167
    [10] 胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散. 物理学报, 2014, 63(23): 238202. doi: 10.7498/aps.63.238202
    [11] 万晖. 带源项的变系数非线性反应扩散方程的精确解. 物理学报, 2013, 62(9): 090203. doi: 10.7498/aps.62.090203
    [12] 李新政, 白占国, 李燕, 赵昆, 贺亚峰. 双层非线性耦合反应扩散系统中复杂Turing斑图. 物理学报, 2013, 62(22): 220503. doi: 10.7498/aps.62.220503
    [13] 石兰芳, 欧阳成, 陈丽华, 莫嘉琪. 一类大气等离子体反应扩散模型的解法. 物理学报, 2012, 61(5): 050203. doi: 10.7498/aps.61.050203
    [14] 白占国, 董丽芳, 李永辉, 范伟丽. 双层耦合Lengel-Epstein模型中的超点阵斑图. 物理学报, 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [15] 詹杰民, 林 东, 李毓湘. 线性与非线性波的Chebyshev广义有限谱模拟. 物理学报, 2007, 56(7): 3649-3654. doi: 10.7498/aps.56.3649
    [16] 吴俊林, 黄新民. 非广延反应扩散系统的广义主方程. 物理学报, 2006, 55(12): 6234-6237. doi: 10.7498/aps.55.6234
    [17] 汪 洪, 娄 平, 庄永河. 用重整化群流方程方法求解t-J模型元激发能谱. 物理学报, 2004, 53(2): 577-581. doi: 10.7498/aps.53.577
    [18] 刘慕仁, 陈若航, 李华兵, 孔令江. 二维对流扩散方程的格子Boltzmann方法. 物理学报, 1999, 48(10): 1800-1803. doi: 10.7498/aps.48.1800
    [19] 官山, 陆启韶, 黄克累. 简化Hodgkin-Huxley反应-扩散方程描述的可激活介质中的旋转波. 物理学报, 1997, 46(5): 1028-1035. doi: 10.7498/aps.46.1028
    [20] 陈良恒. 不可逆化学反应扩散方程. 物理学报, 1981, 30(7): 857-865. doi: 10.7498/aps.30.857
计量
  • 文章访问数:  11630
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-06
  • 修回日期:  2017-11-06
  • 刊出日期:  2018-03-05

/

返回文章
返回