搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体中散斑光场的传输特性

杨春林

引用本文:
Citation:

等离子体中散斑光场的传输特性

杨春林

Propagation characteristics of speckle field in plasma

Yang Chun-Lin
PDF
导出引用
  • 为了深入了解激光驱动惯性约束核聚变系统中连续位相板所产生的散斑在抑制等离子体非线性效应时起到的作用,采用统计光学理论及矩阵光学方法,分析了散斑在等离子体中的传输特性,并通过数值模拟计算了散斑的自相关函数值.在此基础上,解释了散斑抑制等离子体非线性效应的机制,通过定量计算揭示了散斑光场的自相关长度在传输过程中的变化.结果表明,高密度等离子体中的散斑自相关长度更短,这有助于对等离子体中各类非线性效应的抑制.
    The interaction between light and plasma is one of the key problems in an inertial confinement fusion system. Some instability processes will occur when the energy of laser is absorbed by plasma. Because reducing the coherence of laser can significantly restrain the instability of the plasma, in practice, a continuous phase plate (CPP) is often used to generate the speckle and thereby to restrain the nonlinear effect in plasma. To clarify the working mechanism of CPP, the propagation characteristics of speckle field are studied in this paper. Since there are two different kinds of media in the light path, the statistical optics theory and the matrix optics method are combined to analyze the propagation characteristics of the speckle field in plasma. The ABCD matrix of the plasma is deduced. And then intensity distribution properties of the speckle filed in the plasma are calculated. Meanwhile, the autocorrelation length of the speckle field is calculated and the mechanism of the nonlinear restraint is explained. The results show that the speckle field is a paseudorandom field. It will bring a random phase disturbance to the wavefront in the propagation direction. It is very different form the ordinary Gaussian beam, the speckle filed has a limited longitudinal autocorrelation length. Though the propagation rule of the speckle field in plasma is similar to that in air, when the laser transmits into plasma, the coherence of the laser speckle weakens rapidly. The autocorrelation length of the speckle field in the plasma is shorter than that in air. Therefore, many kinds of nonlinear effects can be restrained when the speckle transmits into plasma. Specially, the autocorrelation length of the speckle is much shorter in the high density plasma. So the result of suppressing the nonlinear effect is better in plasma with high density than that with low density. This characteristic is very helpful in restraining the different nonlinear effects in plasma.
      Corresponding author: Yang Chun-Lin, yangchunlin@hotmail.com
    [1]

    Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501

    [2]

    Leeper R J 2011 Plasma and Fusion Research 6 1104012

    [3]

    Kurilenkov Y K, Tarakanov V P, Kov S U G 2010 Plasma Phys. Rep. 36 1227

    [4]

    Chang T Q 1991 Laser-plasma Interaction and the Laser Fusion (Changsha:Hunan Science Press) p2 (in Chinese)[常铁强 1991 激光等离子体相互作用与激光聚变(长沙:湖南科学技术出版) 第2页]

    [5]

    Mei Q Y, Zhao X W, Li W H, Jiang X H, Xie P, Zheng Z J, Tang D Y 1994 High Power Laser and Particle Beams 54 186 (in Chinese)[梅启庸, 赵雪薇, 李文洪, 蒋小华, 谢平, 郑志坚, 唐道源 1994 强激光与粒子束 54 186]

    [6]

    Montgomery D S 2016 Phys. Plasmas 23 055601

    [7]

    Livesscu D, Wei T, Mark R P 2011 J. Phys. 318 082007

    [8]

    Dubinov A E, Petrik A G, Kurkin S A, Frolov N S, Koronovskii A A 2016 Phys. Plasmas 23 042105

    [9]

    Xiang J, Zheng C Y, Liu Z J 2010 Acta Phys. Sin. 59 8717 (in Chinese)[项江, 郑春阳, 刘占军 2010 物理学报 59 8717]

    [10]

    Zhang L, Dong Q L, Zhang J, Wang S J, Sheng Z M, He M Q, Zhang J 2009 Acta Phys. Sin. 58 1833 (in Chinese)[张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰 2009 物理学报 58 1833]

    [11]

    Hafizi B, Palastro J P, Gordon D F, Jones T G, Helle M H 2015 Opt. Lett. 40 1556

    [12]

    Zhou Y L, Sui Z, D I Y C, Xu L X, Ming H 2014 Chin. Opt. Lett. 12 92

    [13]

    Rawat P, Gauniyal R, Purohit G 2014 Phys. Plasmas 21 011101

    [14]

    Brunel F 1988 Phys. Fluids 31 2714

    [15]

    Estabrook K G, Valeo E J, Kruer W L 1975 Phys. Fluids 18 1151

    [16]

    Goodman J W (translated by Cao Q Z, Chen J B) 2007 Speckle Phenomena in Optics:Theory and Applications (Beijing:Science Press) p1 (in Chinese)[约瑟夫古德曼 著(曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用(北京:科学出版社)第1页]

    [17]

    L B D 1991 Laser Optics (Chengdu:Sichuan University Press) p16 (in Chinese)[吕百达 1991 激光光学(成都:四川大学出版社) 第16页]

    [18]

    Goodman J W (translated by Cao Q Z, Chen J B) 2007 Speckle Phenomena in Optics:Theory and Application (Beijing:Science Press) p71 (in Chinese)[约瑟夫古德曼 著 (曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用(北京:科学出版社)第71页]

    [19]

    Tikhonchuk V T, Mounaix P, Pesme D 1997 Phys. Plasmas 4 2658

    [20]

    Glenzer S H, Arnold P, Bardsley G, Berger R L, Bonanno G, Borger T, Bower D E, Bowers M, Bryant R, Buckman S, Burkhart S C, Campbell K, Chrisp M P, Cohen B I, Constantin C 2004 Inertial Fusion Sciences and Applications 2003 207

  • [1]

    Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501

    [2]

    Leeper R J 2011 Plasma and Fusion Research 6 1104012

    [3]

    Kurilenkov Y K, Tarakanov V P, Kov S U G 2010 Plasma Phys. Rep. 36 1227

    [4]

    Chang T Q 1991 Laser-plasma Interaction and the Laser Fusion (Changsha:Hunan Science Press) p2 (in Chinese)[常铁强 1991 激光等离子体相互作用与激光聚变(长沙:湖南科学技术出版) 第2页]

    [5]

    Mei Q Y, Zhao X W, Li W H, Jiang X H, Xie P, Zheng Z J, Tang D Y 1994 High Power Laser and Particle Beams 54 186 (in Chinese)[梅启庸, 赵雪薇, 李文洪, 蒋小华, 谢平, 郑志坚, 唐道源 1994 强激光与粒子束 54 186]

    [6]

    Montgomery D S 2016 Phys. Plasmas 23 055601

    [7]

    Livesscu D, Wei T, Mark R P 2011 J. Phys. 318 082007

    [8]

    Dubinov A E, Petrik A G, Kurkin S A, Frolov N S, Koronovskii A A 2016 Phys. Plasmas 23 042105

    [9]

    Xiang J, Zheng C Y, Liu Z J 2010 Acta Phys. Sin. 59 8717 (in Chinese)[项江, 郑春阳, 刘占军 2010 物理学报 59 8717]

    [10]

    Zhang L, Dong Q L, Zhang J, Wang S J, Sheng Z M, He M Q, Zhang J 2009 Acta Phys. Sin. 58 1833 (in Chinese)[张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰 2009 物理学报 58 1833]

    [11]

    Hafizi B, Palastro J P, Gordon D F, Jones T G, Helle M H 2015 Opt. Lett. 40 1556

    [12]

    Zhou Y L, Sui Z, D I Y C, Xu L X, Ming H 2014 Chin. Opt. Lett. 12 92

    [13]

    Rawat P, Gauniyal R, Purohit G 2014 Phys. Plasmas 21 011101

    [14]

    Brunel F 1988 Phys. Fluids 31 2714

    [15]

    Estabrook K G, Valeo E J, Kruer W L 1975 Phys. Fluids 18 1151

    [16]

    Goodman J W (translated by Cao Q Z, Chen J B) 2007 Speckle Phenomena in Optics:Theory and Applications (Beijing:Science Press) p1 (in Chinese)[约瑟夫古德曼 著(曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用(北京:科学出版社)第1页]

    [17]

    L B D 1991 Laser Optics (Chengdu:Sichuan University Press) p16 (in Chinese)[吕百达 1991 激光光学(成都:四川大学出版社) 第16页]

    [18]

    Goodman J W (translated by Cao Q Z, Chen J B) 2007 Speckle Phenomena in Optics:Theory and Application (Beijing:Science Press) p71 (in Chinese)[约瑟夫古德曼 著 (曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用(北京:科学出版社)第71页]

    [19]

    Tikhonchuk V T, Mounaix P, Pesme D 1997 Phys. Plasmas 4 2658

    [20]

    Glenzer S H, Arnold P, Bardsley G, Berger R L, Bonanno G, Borger T, Bower D E, Bowers M, Bryant R, Buckman S, Burkhart S C, Campbell K, Chrisp M P, Cohen B I, Constantin C 2004 Inertial Fusion Sciences and Applications 2003 207

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [2] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] 尹君, 王少飞, 张俊杰, 谢佳谌, 陈宏宇, 贾源, 胡徐锦, 于凌尧. 基于动态散斑照明的宽场荧光显微技术理论研究. 物理学报, 2021, 70(23): 238701. doi: 10.7498/aps.70.20211022
    [4] 宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福. 大散射角散斑场中有关相位奇异新特性的研究. 物理学报, 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [5] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [6] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [7] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [8] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [9] 宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉. 散斑场相位涡旋及其传播特性的实验研究. 物理学报, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [10] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [11] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [12] 安治永, 李应红, 吴 云, 苏长兵, 宋慧敏. 对称等离子体激励器系统电场仿真研究. 物理学报, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [13] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [14] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [15] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [17] 张 丽, 李向东, 蒋新革. 等离子体效应对类氦氖Kα线系电偶极辐射的影响. 物理学报, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [18] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程. 物理学报, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [19] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [20] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
计量
  • 文章访问数:  4865
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-06
  • 修回日期:  2018-02-07
  • 刊出日期:  2019-04-20

/

返回文章
返回