搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

染料掺杂液晶填充毛细管的激光发射特性研究

吕月兰 尹向宝 孙伟民 刘永军 苑立波

引用本文:
Citation:

染料掺杂液晶填充毛细管的激光发射特性研究

吕月兰, 尹向宝, 孙伟民, 刘永军, 苑立波

Laser emission characteristics of the capillary of dye-doped liquid crystal

Lü Yue-Lan, Yin Xiang-Bao, Sun Wei-Min, Liu Yong-Jun, Yuan Li-Bo
PDF
导出引用
  • 本文提出利用染料掺杂液晶填充PI光控取向膜毛细管获得可调谐激光.采用532 nm YAG倍频脉冲激光器抽运,实验及理论研究了有聚酰亚胺(PI)取向膜和无PI取向膜毛细管的激光发射特性,对比分析了两种情形的激光产生阈值以及随温度变化的特性.结果表明:经PI光控取向处理的染料掺杂胆甾相液晶毛细管的激光发射模式具有分布反馈模式和回音壁模式,同时,激光产生阈值为4.5 mJ mm-2;发现当温度升高时,发射光谱发生蓝移,中心波长调谐范围为5.9 nm,温度升高到43℃时,形成质量非常好的回音壁模式,其自由光谱范围为1.05 nm.经PI光控取向处理的染料掺杂向列相液晶激光发射模式为随机激光,并且较无PI取向时激光发射峰减少.
    The dye doped liquid crystal filling tunable laser has been widely adopted in many areas, such as optical communication, sensor and medical imaging with a low cost. The temperature-sensitive refractive indice of liquid crystal makes it a filling material suitable for being used in the capillary. The existing studies have introduced the liquid crystal filled with capillary, which has the complicated craft and big cost. As is well known, the capillary has the advantages of the easy preparation and low cost, but the liquid crystal filled capillary based dye doped liquid crystal filling tunable laser is rarely studied. Dye-doped cholesteric liquid crystal (CLC) based tunable laser has many advantages such as small-size, low-threshold, high-efficiency, wide-tunability with wavelength varying from ultraviolet to infrared. So It shows great promise in applications of single-chip experiment, biological identification and sensor. To develop high-efficiency dye-doped CLC tunable lasers for different potential applications, it is crucial to explore their emission performances in three laser emission modes:distributed feedback (DFB), whispering gallery modes (WGMs) and random laser (RL). We theoretically propose and experimentally demonstrate the characteristics of laser emission based on dye-doped CLC in capillary tubes which are treated with the photo-alignment PI films. Firstly, we prepare capillary tubes filled with dye-doped CLC with three inner diameters of 100 m, 200 m and 300 m. By using a double-frequency Nd:YAG 532 nm laser as a pump source, the emission spectra, energy thresholds and temperature dependent tunabilities in the cases with and without PI films are analyzed, respectively. It is clearly shown that dye-doped CLC in the capillary with the PI films generate DFB-mode lasing and WGMs lasing. Experimental results show that the capillaries with thinner-inner diameters and PI films have lower emission threshold energies than without PI films, the former threshold can be reduced to as low as 4.5 J mm-2. Meanwhile, with temperature increasing, the DFB wavelength is blue-shifted, resulting in a central wavelength tuning range of 5.9 nm. Then high performance WGM with an FSR of 1.05 nm is created when the temperature is increased up to as high as 43 ℃. It can be found that the laser emission with photo-alignment PI films shows an optimum RL mode with less laser emission peaks than the laser emission without photo-alignment PI films. In this work we propose and demonstrate that a capillary based dye-doped CLC tunable laser with photo-alignment PI films can easily work with three emissions:DFB-mode, WGMs or RL by changing optical field and the applied temperature. The above research results provide valuable clues and methods to develop high-quality dye-doped CLC based tunable laser, filter, optical switch and sensor.
      通信作者: 刘永军, liuyj@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1531102,U1631239,U1331114,61535004)资助的课题.
      Corresponding author: Liu Yong-Jun, liuyj@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Scshience Foundation of China (Grant Nos. U1531102, U1631239, U1331114, 61535004).
    [1]

    Lin J H, HsiaoY L 2014 Opt. Mater. Express 4 1555

    [2]

    Zhang J, Dai H T, Yan C, Xu D G, Liu Y J, Luo D, Sun X W 2016 Opt. Mater. Express 6 1367

    [3]

    Krämmer S, Rastjoo S, Siegle T, Wondimu S F, Klusmann C, Koos C 2017 Opt. Express 25 7884

    [4]

    Van D T, Rui C, Han D S 2012 Adv. Mater. 24 60

    [5]

    Hiroyuki Y, Yusuke S, Yo I, Masaya T, Yasuhiro O, Akihiko F, Masanori O 2013 J. Appl. Phys. 113 203105

    [6]

    Lin J H, Chen P Y, Wu J J 2014 Opt. Express 22 9932

    [7]

    Noh J, Liang H L, Drevensekolenik I, Lagerwall J F 2014 J. Mater. Chem. C 2 806

    [8]

    Shirvani M H, Mohajerani E, Wu S T 2010 Opt. Express 18 5021

    [9]

    Arnold S, KhoshsimaM, Teraoka I, Holler S, Vollmer F 2003 Opt. Lett. 28 272

    [10]

    Xiao Y F, Zou C L, Li B B 2010 Phys. Rev. Lett. 105 153902

    [11]

    Wang Y, Li H Y, Zhao L Y, Wu B, Liu S Q, Liu Y J, Yang J 2016 Opt. Laser Technol. 86 61

    [12]

    Hengky C, Stephen C R, Fan X D 2016 Sci. Rep-uk 6 32668

    [13]

    Li Y, Zhang H, Liu B, Wu J, Song B 2017 J. Optics-uk 19 015801

    [14]

    Yusuke N, Ryushi F, Kotaro K 2013 J. Opt. Soc. Am. B 30 2233

    [15]

    Meltz G, Morey W W, Glenn W H 1989 Opt. Lett. 14 823

    [16]

    Kogelnik H, Shank C V 1971 Appl. Phys. Lett. 18 152

    [17]

    Little B E, Laine J P, Hauas H A 2002 J. Lightw. Technol. 17 704

    [18]

    Aseel M, Vishnu K, Sudad S A, Peter K, Vlasta Z, Gerald F, Yuliya S 2017 Opt. Express 12 3

    [19]

    Wang L, Wang M, Yang M C, Shi L J, Deng L G, Yang H 2016 Chin. Phys. B 25 094217

    [20]

    Zhang T, Wu L J, Gu Y X, Zheng C D, Zheng C D 2016 Chin. Phys. B 25 096101

    [21]

    Liu Y J, Wang F R, Sun W M, Liu X Q, Zhang L L 2013 Acta Phys. Sin. 62 076101 (in Chinese)[刘永军, 王斐儒, 孙伟民, 刘晓颀, 张伶莉 2013 物理学报 62 076101]

  • [1]

    Lin J H, HsiaoY L 2014 Opt. Mater. Express 4 1555

    [2]

    Zhang J, Dai H T, Yan C, Xu D G, Liu Y J, Luo D, Sun X W 2016 Opt. Mater. Express 6 1367

    [3]

    Krämmer S, Rastjoo S, Siegle T, Wondimu S F, Klusmann C, Koos C 2017 Opt. Express 25 7884

    [4]

    Van D T, Rui C, Han D S 2012 Adv. Mater. 24 60

    [5]

    Hiroyuki Y, Yusuke S, Yo I, Masaya T, Yasuhiro O, Akihiko F, Masanori O 2013 J. Appl. Phys. 113 203105

    [6]

    Lin J H, Chen P Y, Wu J J 2014 Opt. Express 22 9932

    [7]

    Noh J, Liang H L, Drevensekolenik I, Lagerwall J F 2014 J. Mater. Chem. C 2 806

    [8]

    Shirvani M H, Mohajerani E, Wu S T 2010 Opt. Express 18 5021

    [9]

    Arnold S, KhoshsimaM, Teraoka I, Holler S, Vollmer F 2003 Opt. Lett. 28 272

    [10]

    Xiao Y F, Zou C L, Li B B 2010 Phys. Rev. Lett. 105 153902

    [11]

    Wang Y, Li H Y, Zhao L Y, Wu B, Liu S Q, Liu Y J, Yang J 2016 Opt. Laser Technol. 86 61

    [12]

    Hengky C, Stephen C R, Fan X D 2016 Sci. Rep-uk 6 32668

    [13]

    Li Y, Zhang H, Liu B, Wu J, Song B 2017 J. Optics-uk 19 015801

    [14]

    Yusuke N, Ryushi F, Kotaro K 2013 J. Opt. Soc. Am. B 30 2233

    [15]

    Meltz G, Morey W W, Glenn W H 1989 Opt. Lett. 14 823

    [16]

    Kogelnik H, Shank C V 1971 Appl. Phys. Lett. 18 152

    [17]

    Little B E, Laine J P, Hauas H A 2002 J. Lightw. Technol. 17 704

    [18]

    Aseel M, Vishnu K, Sudad S A, Peter K, Vlasta Z, Gerald F, Yuliya S 2017 Opt. Express 12 3

    [19]

    Wang L, Wang M, Yang M C, Shi L J, Deng L G, Yang H 2016 Chin. Phys. B 25 094217

    [20]

    Zhang T, Wu L J, Gu Y X, Zheng C D, Zheng C D 2016 Chin. Phys. B 25 096101

    [21]

    Liu Y J, Wang F R, Sun W M, Liu X Q, Zhang L L 2013 Acta Phys. Sin. 62 076101 (in Chinese)[刘永军, 王斐儒, 孙伟民, 刘晓颀, 张伶莉 2013 物理学报 62 076101]

  • [1] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [2] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [3] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [4] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [5] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] 侯智善, 徐帅, 骆杨, 李爱武, 杨罕. 激光3D纳米打印温度敏感的微球激光器. 物理学报, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [7] 张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远. Tm3+掺杂Ge-Ga-S玻璃微球-石英光纤锥耦合系统的荧光回廊模特性. 物理学报, 2016, 65(14): 144205. doi: 10.7498/aps.65.144205
    [8] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [9] 李侠, 郭文华, 吕志娟, 邢进华, 王鸣. 溶胶凝胶法制备圆柱形大孔二氧化硅反蛋白石结构晶体. 物理学报, 2014, 63(2): 024205. doi: 10.7498/aps.63.024205
    [10] 舒方杰. 微盘腔垂直耦合器特性的拓展分析. 物理学报, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [11] 员美娟, 郑伟, 李云宝, 李钰. 单毛细管中赫切尔-巴尔克莱流体的分形分析. 物理学报, 2012, 61(16): 164701. doi: 10.7498/aps.61.164701
    [12] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [13] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [14] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [15] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [16] 郭铁英, 娄淑琴, 李宏雷, 简水生. 用于制作光子晶体光纤的毛细管的拉制理论与实验分析. 物理学报, 2009, 58(7): 4724-4730. doi: 10.7498/aps.58.4724
    [17] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [18] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 束缚高压强气体中成丝的空心毛细管芯径对光谱展宽的影响. 物理学报, 2006, 55(10): 5294-5297. doi: 10.7498/aps.55.5294
    [19] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [20] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
计量
  • 文章访问数:  6328
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-15
  • 修回日期:  2017-12-06
  • 刊出日期:  2019-02-20

/

返回文章
返回