搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种减少空间调制快拍成像测偏仪伪信息的方法

张晶 任文艺 曹奇志 李建映 邓婷 Jin Ming-Wu

引用本文:
Citation:

一种减少空间调制快拍成像测偏仪伪信息的方法

张晶, 任文艺, 曹奇志, 李建映, 邓婷, Jin Ming-Wu

A method of reducing false signature in spatially-modulated snapshot imaging polarimeter

Zhang Jing, Ren Wen-Yi, Cao Qi-Zhi, Li Jian-Ying, Deng Ting, Jin Ming-Wu
PDF
导出引用
  • 空间调制快拍成像测偏技术能将偏振信息编码到一幅干涉图中,通过一次测量同时获取目标全部斯托克斯参量.针对空间调制快拍成像测偏技术中,目标像的高频部分对偏振信息通道产生串扰,导致重构的偏振信息包含有伪信息和频域重构目标像的空间分辨率低等问题,提出一种消除伪信息和获取全分辨率目标像的方法.该方法通过对两次快拍测量获得的干涉图进行简单加减运算,便可获得探测目标清晰的纯图像和高信噪比的偏振分量干涉图.本文对该方法进行了详细的理论分析,并通过计算机仿真和搭建实验平台,验证了该方法的可行性.这为空间调制快拍成像测偏技术获取全分辨率目标像和高质量重构偏振信息提供了新思路.
    Spatially-modulated snapshot imaging polarimeter can encode four Stokes parameters (S0, S1, S2 and S3) into a single interferogram and allow the instantaneous measurement of polarization from a single snapshot.However, the reconstructed polarization information contains aliasing signal, and the reconstructed intensity images suffer low spatial resolution because of the crosstalk between high frequency components of the image and frequency domain filtering for the polarization channels.In this paper, we propose an image superposition and subtraction method to mitigate the aliasing problem and to recover the image resolution.The two interferograms acquired from two snapshot measurements are superposed to obtain the intensity image (S0 component) of an object without the polarization components because the phases of the polarization components in the two interferograms are opposite.In comparison with the intensity of each of the original interferograms, the intensity of S0 component increases twice and its spatial resolution improves up to a maximum value offered by the instrument.Then a subtraction between the two interferograms is performed to derive the pure interference fringes while the intensity image vanishes.The intensity of the pure interference fringes also increases twice compared with that of each original interferogram because phases of the interference terms in original interferograms are opposite.The polarization images (S1, S2 and S3 components) can be reconstructed from the pure interference fringes, and do not include crosstalk signals between the high frequency components of the intensity image. The theoretical basis of the method is presented through a detailed analysis.Its feasibility is verified by both computer simulation and experiment.The simulation results show that the otherness and the structural similarity index between the input and reconstructed intensity images is zero and 1, respectively, indicating a perfect reconstruction of S0.The results also make it clear that the pure interference fringes do not include any component of intensity image, and thus the reconstructed polarization information does not contain any crosstalk signals.Moreover, the experimental results are in accordance with the theoretical expectation and the computer simulations.This research provides a novel means for spatially-modulated snapshot imaging polarization technology to obtain full-resolution object images and high-quality reconstructed polarization information.
      通信作者: 曹奇志, qzhcao77@163.com
    • 基金项目: 国家自然科学基金(批准号:11664004,11504297,41661085)、广西自然科学基金(批准号:2016GXNSFAA380241)、陕西省科技厅项目(批准号:2016KTZDGY05-02),广西壮族自治区中青年教师基础能力提升项目(批准号:2017KY0403)、北部湾环境演变与资源利用教育部重点实验室系统基金和广西师范学院博士启动基金资助的课题.
      Corresponding author: Cao Qi-Zhi, qzhcao77@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664004, 11504297, 41661085), the National Natural Science Foundation of Guangxi, China (Grant No. 2016GXNSFAA380241), Shaanxi Science and Technology, China (Grant No. 2016KTZDGY05-02), Basic Ability Promotion Project of Guangxi Middle and Young Teachers in University, China (Grant No. 2017KY0403), Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, China (Guangxi Teachers Education University), and the Ph. D. Initial Fund of the Guangxi Teachers Education University, China.
    [1]

    Snik F, Craven-Jones J, Escuti M, Fineschid S, Harringtone D, Martinof A D, Mawetg D, Riedih J, Tyo J S 2014 Proc. SPIE 9099, Polarization:Measurement, Analysis, and Remote Sensing XI Baltimore, Maryland, United States, March 24-28, 2014 p90990B

    [2]

    Forward S, Gribble A, Alali S, Andras A L, Vitkin I A 2017 Sci. Reports 7 11958

    [3]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [4]

    Alali S, Vitkin A 2015 J. Biomed. Opt. 20 0611041

    [5]

    .Oka K, Kaneko T 2003 Opt. Express 11 1510

    [6]

    Luo H T 2008 Ph. D. Dissertation (Tucson:University of Arizona)

    [7]

    Cao Q Z 2014 Ph. D. Dissertation (Xi'an:xi'an Jiaotong University) (in Chinese)[曹奇志 2014 博士学位论文 (西安:西安交通大学)]

    [8]

    Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 5791

    [9]

    Jian X H, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 824 (in Chinese)[简小华, 张淳民, 赵葆常 2007 物理学报 56 824]

    [10]

    Peng Z H, Zhang C M, Zhao B C, Li Y C, Wu F Q 2006 Acta Phys. Sin. 55 6374 (in Chinese)[彭志红, 张淳民, 赵葆常, 李英才, 吴福全 2006 物理学报 55 6374]

    [11]

    Qu Y, Zhang C M, Wang D Y, Tian P B, Bai W G, Zhang X Y, Zhang P, Dai H S, Wu Q M 2013 Int. J. Remote Sens. 34 3938

    [12]

    Yuan Z L, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 6413 (in Chinese)[彭志红, 张淳民, 赵葆常 2007 物理学报 56 6413]

    [13]

    Oka K, Haga Y, Komaki Y 2013 Proceedings Volume 8873, Polarization Science and Remote Sensing VI San Diego, California, United States September 27, 2013 p88730R-1

    [14]

    Oka K, Haga Y, Michida H 2015 Proceedings Volume 9613, Polarization Science and Remote Sensing VⅡ San Diego, California, United States, September 1, 2015 p96130E-9

    [15]

    Oka, K, Kodai S, Hiroshi M 2017 Proceedings Volume 10407, Polarization Science and Remote Sensing VⅢ San Diego, California, United States, September 7, 2017 p104070M

    [16]

    Hu Q Y, Yang W F, Hu Y D, Hong J 2015 Acta Opt. Sin. 2 144 (in Chinese)[胡巧云, 杨伟锋, 胡亚东, 洪津 2015 光学学报 2 144]

    [17]

    Cao Q Z, Zhang J, DeHoog E, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702 (in Chinese)[曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 阎妍 2016 物理学报 65 050702]

    [18]

    Cao Q Z, Zhang C M, Zhang J, Kang Y Q 2014 Optik 125 3380

    [19]

    Cao Q Z, Zhang J, DeHoog E, Zhang C M 2016 Appl. Opt. 55 954

    [20]

    Kudenov M, Escuti M, Dereniak E, Oka K 2011 Appl. Opt. 50 2283

    [21]

    Kudenov M W 2009 Ph. D. Dissertation (Tucson:The University of Arizona)

    [22]

    Horé A, Ziou D 2010 Proceedings of IEEE Conference on Pattern Recognition Istanbul, Turkey October 7, 2010 p2366

    [23]

    https://www.mathworks.com/help/images/ref/ssim.html?searchHighlight=SSIM&s_tid=doc_srchtitle[2017-11-8]

    [24]

    Wang Z, Bovik C, Sheikh R, Simoncelli P 2004 IEEE Trans. on Image Process. 13 600

  • [1]

    Snik F, Craven-Jones J, Escuti M, Fineschid S, Harringtone D, Martinof A D, Mawetg D, Riedih J, Tyo J S 2014 Proc. SPIE 9099, Polarization:Measurement, Analysis, and Remote Sensing XI Baltimore, Maryland, United States, March 24-28, 2014 p90990B

    [2]

    Forward S, Gribble A, Alali S, Andras A L, Vitkin I A 2017 Sci. Reports 7 11958

    [3]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [4]

    Alali S, Vitkin A 2015 J. Biomed. Opt. 20 0611041

    [5]

    .Oka K, Kaneko T 2003 Opt. Express 11 1510

    [6]

    Luo H T 2008 Ph. D. Dissertation (Tucson:University of Arizona)

    [7]

    Cao Q Z 2014 Ph. D. Dissertation (Xi'an:xi'an Jiaotong University) (in Chinese)[曹奇志 2014 博士学位论文 (西安:西安交通大学)]

    [8]

    Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 5791

    [9]

    Jian X H, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 824 (in Chinese)[简小华, 张淳民, 赵葆常 2007 物理学报 56 824]

    [10]

    Peng Z H, Zhang C M, Zhao B C, Li Y C, Wu F Q 2006 Acta Phys. Sin. 55 6374 (in Chinese)[彭志红, 张淳民, 赵葆常, 李英才, 吴福全 2006 物理学报 55 6374]

    [11]

    Qu Y, Zhang C M, Wang D Y, Tian P B, Bai W G, Zhang X Y, Zhang P, Dai H S, Wu Q M 2013 Int. J. Remote Sens. 34 3938

    [12]

    Yuan Z L, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 6413 (in Chinese)[彭志红, 张淳民, 赵葆常 2007 物理学报 56 6413]

    [13]

    Oka K, Haga Y, Komaki Y 2013 Proceedings Volume 8873, Polarization Science and Remote Sensing VI San Diego, California, United States September 27, 2013 p88730R-1

    [14]

    Oka K, Haga Y, Michida H 2015 Proceedings Volume 9613, Polarization Science and Remote Sensing VⅡ San Diego, California, United States, September 1, 2015 p96130E-9

    [15]

    Oka, K, Kodai S, Hiroshi M 2017 Proceedings Volume 10407, Polarization Science and Remote Sensing VⅢ San Diego, California, United States, September 7, 2017 p104070M

    [16]

    Hu Q Y, Yang W F, Hu Y D, Hong J 2015 Acta Opt. Sin. 2 144 (in Chinese)[胡巧云, 杨伟锋, 胡亚东, 洪津 2015 光学学报 2 144]

    [17]

    Cao Q Z, Zhang J, DeHoog E, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702 (in Chinese)[曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 阎妍 2016 物理学报 65 050702]

    [18]

    Cao Q Z, Zhang C M, Zhang J, Kang Y Q 2014 Optik 125 3380

    [19]

    Cao Q Z, Zhang J, DeHoog E, Zhang C M 2016 Appl. Opt. 55 954

    [20]

    Kudenov M, Escuti M, Dereniak E, Oka K 2011 Appl. Opt. 50 2283

    [21]

    Kudenov M W 2009 Ph. D. Dissertation (Tucson:The University of Arizona)

    [22]

    Horé A, Ziou D 2010 Proceedings of IEEE Conference on Pattern Recognition Istanbul, Turkey October 7, 2010 p2366

    [23]

    https://www.mathworks.com/help/images/ref/ssim.html?searchHighlight=SSIM&s_tid=doc_srchtitle[2017-11-8]

    [24]

    Wang Z, Bovik C, Sheikh R, Simoncelli P 2004 IEEE Trans. on Image Process. 13 600

  • [1] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正. 物理学报, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [2] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [3] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法. 物理学报, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [4] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [5] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像. 物理学报, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [6] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术. 物理学报, 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [7] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像. 物理学报, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [8] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [9] 曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 闫妍. 空间调制稳态微型快拍成像测偏技术研究. 物理学报, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [10] 李杰, 朱京平, 张云尧, 刘宏, 侯洵. 光谱分辨率可调的新型干涉成像光谱技术研究. 物理学报, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [11] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究. 物理学报, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [12] 王芳, 赵星, 杨勇, 方志良, 袁小聪. 基于人眼视觉的集成成像三维显示分辨率的比较. 物理学报, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [13] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [14] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究. 物理学报, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [15] 代秋声, 漆玉金. 针孔单光子发射计算机断层成像的空间分辨率研究. 物理学报, 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [16] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究. 物理学报, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [17] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像. 物理学报, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [18] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器. 物理学报, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [19] 菅冀祁, 马 骋, 贾惠波. 光致变色双波长光存储读出信号串扰建模与消减. 物理学报, 2005, 54(8): 3604-3609. doi: 10.7498/aps.54.3604
    [20] 齐国生, 肖家曦, 刘嵘, 蒋培军, 佘鹏, 徐端颐. 光致变色二芳基乙烯多波长光存储研究. 物理学报, 2004, 53(4): 1076-1080. doi: 10.7498/aps.53.1076
计量
  • 文章访问数:  5247
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 修回日期:  2017-11-08
  • 刊出日期:  2019-02-20

/

返回文章
返回