-
采用高速摄像仪对稠密颗粒射流倾斜撞击形成的类液体颗粒膜特征进行实验研究,考察了颗粒粒径、射流速度以及射流含固率等因素对颗粒膜形态及动态特征的影响.结果表明:随着颗粒粒径增大,稠密颗粒倾斜撞击流由颗粒膜向散射模式转变;随着射流速度增加,气固不稳定增强,射流流量出现脉动,正面与侧面分别表现为颗粒膜的非轴对称振荡和表面波纹结构;颗粒膜非轴对称振荡的振荡频率和振荡幅度随射流速度的增大而增大;表面波纹速度和波长沿传播方向增大,波纹间存在叠加现象.颗粒膜出现非轴对称振荡主要是因为喷嘴出口由气固不稳定性引起的射流流量脉动,射流流量脉动频率与撞击面振荡频率基本相当.Dense granular impinging jets widely exist in natural flow phenomena and industrial processes, such as the rapid heating, cooling or drying, and gasification. It is important to investigate the factors influencing the flow patterns of dense granular impinging jets and reveal the evolution rules of the flow patterns. The dynamic behaviors of the dense granular impinging jets are experimentally studied by a high-speed camera and image processing software of Image J. The effects of the particle diameter, the granular jet velocity (u0) and the solid content of the granular jet (xp) on flow pattern of the granular impinging jet are investigated. Two flow regimes of the dense granular impinging jets, i.e., the liquid-like granular film and the scattering pattern, are identified. The results show that with the increase of the particle diameter and the granular jet velocity, both the solid content of the granular jet and the inter-particle collision frequency decrease, which results in the transition of granular sheet to scattering pattern. With the increase of granular jet velocity, the opening angle of the granular sheet from the side view increases, while the opening angle from the front view increases first and sharply decreases later. The results also show that with the increase of the granular jet velocity, the liquid-like granular film becomes unstable and a non-axisymmetric oscillation appears. And the amplitude and frequency of the liquid-like granular film increase with granular jet velocity increasing, and are significantly affected by particle diameter. The interesting behaviors of the liquid-like surface waves are observed on the granular sheet. The surface waves become remarkable with the increase of the granular jet velocity, and their propagating velocities normalized by the granular jet velocity vary from 0.7 to 0.9. The waves propagating on the granular sheet may emerge, which will reduce the frequencies of the surface waves and increase the surface wavelengths. The results also show that the oscillation frequency of the granular film nearly equals the pulsation frequency of the granular jet. It is indicated that the gas-solid interaction inside the nozzle increases with granular jet velocity increasing, and causes the instability of the granular jet, resulting in the non-axisymmetric oscillation on the granular sheet consequently. The results in this paper present significant knowledge of the dense granular impinging jets and also provide some principles for the applications in dense granular impinging jets in industrial processes.
-
Keywords:
- dense granular jet /
- jet impact /
- granular sheet /
- non-axisymmetric oscillation
[1] Wu Y 2001 Chem. Indus. Eng. Prog. 11 8 (in Chinese)[伍沅 2002 化工进展 11 8]
[2] Guo Q H, Yu G S, Wang F C, Wang Y F, Dai Z H 2017 XIAO Danfei 4 1 (in Chinese)[郭庆华, 于广锁, 王辅臣, 王奕飞, 代正华 2017 氮肥与合成气 4 1]
[3] Liang T, Bai J, Zhang L, Chang C, Fang S H, Han X L 2016 Petrochem. Technol. 3 360 (in Chinese)[梁腾波, 白净,张璐,常春,方书起,韩秀丽 2016 石油化工 3 360]
[4] Liu H J, Zou C, Tian Z W, Zheng C G 2008 J. Huazhong Univ. Sci. Technol. (Natural Science Edition) 5 106 (in Chinese)[刘红娟, 邹春, 田智威, 郑楚光 2008 华中科技大学学报:自然科学版 5 106]
[5] Sun Z G, Li W F, Liu H F, Yu Z H 2009 Chem. Reaction Engineer. Technol. 2 97 (in Chinese)[孙志刚, 李伟锋, 刘海峰, 于遵宏 2009 化学反应工程与工艺 2 97]
[6] Sun Z G 2009 Ph. D. Dissertation (Shanghai:East China University of Science and Technology) (in Chinese)[孙志刚 2009 博士学位论文(上海:华东理工大学)]
[7] Xu H, Zhao H, Zheng C 2014 Chem. Eng. Process. Process Intensify 76 6
[8] Du M, Hao Y L, Liu X D 2009 CIESC J. 60 1950 (in Chinese)[杜敏, 郝英立, 刘向东 2009 化工学报 60 1950]
[9] Du M, Zhao C, Zhou B 2011 Chem. Eng. Sci. 66 4922
[10] Liu X, Chen Y, Chen Y 2014 Chem. Eng. Process. Process Intensify 79 14
[11] Cheng X, Varas G, Citron D, Jaeger H M, Nagel S R 2007 Phys. Rev. Lett. 99 188001
[12] Cheng X, Gordillo L, Zhang W W, Jaeger H M, Nagel S R 2014 Phys. Rev. E 89 042201
[13] Johnson C G, Gray J M N T 2011 J. Fluid Mech. 675 87
[14] Boudet J F, Amaroucheme Y, Bonnier B, Kellay H 2007 J. Fluid Mech. 572 413
[15] Boudet J F, Amaroucheme Y, Bonnier B, Kellay H 2005 Europhys. Lett. 69 365
[16] Qian W W, Li W F, Shi Z H, Liu H F, Wang F C 2016 Acta Phys. Sin. 65 214501 (in Chinese)[钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣 2016 物理学报 65 214501]
[17] Shi Z H, Li W F, Qian W W, Wang F C 2017 Chem. Eng. Sci. 62 1
[18] Shi Z H, Li W F, Liu H F, Wang F C 2017 AIChE J. 63 3276
[19] Huang Y J, Chan C K, Zamankhan P 2010 Phys. Rev. E 82 031307
[20] Ge W, Chen F, Gao J 2007 Chem. Eng. Sci. 62 3346
[21] O'Rourke P J, Snider D M 2010 Chem. Eng. Sci. 65 6014
[22] Ellowitz J 2016 Phys. Rev. E 93 012907
[23] Huang G F 2014 M. S. Dissertation (Shanghai:East China University of Science and Technology) (in Chinese)[黄国锋 2014 硕士学位论文(上海:华东理工大学)]
[24] Huang G F, Li W F, Tu G Y 2014 CIESC J. 10 3789 (in Chinese)[黄国峰, 李伟锋, 屠功毅 2014 化工学报 10 3789]
[25] Li W F, Yao T L, Liu H F, Wang F C 2011 AIChE J. 57 1434
-
[1] Wu Y 2001 Chem. Indus. Eng. Prog. 11 8 (in Chinese)[伍沅 2002 化工进展 11 8]
[2] Guo Q H, Yu G S, Wang F C, Wang Y F, Dai Z H 2017 XIAO Danfei 4 1 (in Chinese)[郭庆华, 于广锁, 王辅臣, 王奕飞, 代正华 2017 氮肥与合成气 4 1]
[3] Liang T, Bai J, Zhang L, Chang C, Fang S H, Han X L 2016 Petrochem. Technol. 3 360 (in Chinese)[梁腾波, 白净,张璐,常春,方书起,韩秀丽 2016 石油化工 3 360]
[4] Liu H J, Zou C, Tian Z W, Zheng C G 2008 J. Huazhong Univ. Sci. Technol. (Natural Science Edition) 5 106 (in Chinese)[刘红娟, 邹春, 田智威, 郑楚光 2008 华中科技大学学报:自然科学版 5 106]
[5] Sun Z G, Li W F, Liu H F, Yu Z H 2009 Chem. Reaction Engineer. Technol. 2 97 (in Chinese)[孙志刚, 李伟锋, 刘海峰, 于遵宏 2009 化学反应工程与工艺 2 97]
[6] Sun Z G 2009 Ph. D. Dissertation (Shanghai:East China University of Science and Technology) (in Chinese)[孙志刚 2009 博士学位论文(上海:华东理工大学)]
[7] Xu H, Zhao H, Zheng C 2014 Chem. Eng. Process. Process Intensify 76 6
[8] Du M, Hao Y L, Liu X D 2009 CIESC J. 60 1950 (in Chinese)[杜敏, 郝英立, 刘向东 2009 化工学报 60 1950]
[9] Du M, Zhao C, Zhou B 2011 Chem. Eng. Sci. 66 4922
[10] Liu X, Chen Y, Chen Y 2014 Chem. Eng. Process. Process Intensify 79 14
[11] Cheng X, Varas G, Citron D, Jaeger H M, Nagel S R 2007 Phys. Rev. Lett. 99 188001
[12] Cheng X, Gordillo L, Zhang W W, Jaeger H M, Nagel S R 2014 Phys. Rev. E 89 042201
[13] Johnson C G, Gray J M N T 2011 J. Fluid Mech. 675 87
[14] Boudet J F, Amaroucheme Y, Bonnier B, Kellay H 2007 J. Fluid Mech. 572 413
[15] Boudet J F, Amaroucheme Y, Bonnier B, Kellay H 2005 Europhys. Lett. 69 365
[16] Qian W W, Li W F, Shi Z H, Liu H F, Wang F C 2016 Acta Phys. Sin. 65 214501 (in Chinese)[钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣 2016 物理学报 65 214501]
[17] Shi Z H, Li W F, Qian W W, Wang F C 2017 Chem. Eng. Sci. 62 1
[18] Shi Z H, Li W F, Liu H F, Wang F C 2017 AIChE J. 63 3276
[19] Huang Y J, Chan C K, Zamankhan P 2010 Phys. Rev. E 82 031307
[20] Ge W, Chen F, Gao J 2007 Chem. Eng. Sci. 62 3346
[21] O'Rourke P J, Snider D M 2010 Chem. Eng. Sci. 65 6014
[22] Ellowitz J 2016 Phys. Rev. E 93 012907
[23] Huang G F 2014 M. S. Dissertation (Shanghai:East China University of Science and Technology) (in Chinese)[黄国锋 2014 硕士学位论文(上海:华东理工大学)]
[24] Huang G F, Li W F, Tu G Y 2014 CIESC J. 10 3789 (in Chinese)[黄国峰, 李伟锋, 屠功毅 2014 化工学报 10 3789]
[25] Li W F, Yao T L, Liu H F, Wang F C 2011 AIChE J. 57 1434
计量
- 文章访问数: 5952
- PDF下载量: 134
- 被引次数: 0