搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声子角动量与手性声子

俞杭 徐锡方 牛谦 张力发

引用本文:
Citation:

声子角动量与手性声子

俞杭, 徐锡方, 牛谦, 张力发

Phonon angular momentum and chiral phonons

Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa
PDF
导出引用
  • 在经典的物理学理论中,声子广泛地被认为是线极化的、不具有角动量的.最近的理论研究发现,在具有自旋声子相互作用的磁性体系(时间反演对称性破缺)中,声子可以携带非零的角动量,在零温时声子除了具有零点能以外还带有零点角动量;非零的声子角动量将会修正通过爱因斯坦-德哈斯效应测量的回磁比.在非磁性材料中,总的声子角动量为零,但是在空间反演对称性破缺的六角晶格体系中,其倒格子空间的高对称点上声子具有角动量,并具有确定的手性;三重旋转对称操作给予声子量子化的赝角动量,赝角动量的守恒将决定电子谷间散射的选择定则;此外还理论预测了谷声子霍尔效应.
    In traditional physics, phonon is widely regarded as being linearly polarized, which means that phonon carries zero angular momentum. Thus the angular momentum of lattice related to mechanical rotation only reflects the lattice rigid-body motion. Recently, in a magnetic system with time reversal symmetry broken by spin-phonon interaction, one found that the phonon angular momentum is nonzero and an odd function of magnetization. At zero temperature, phonon was reported to have a zero-point angular momentum and zero-point energy. Thus the gyromagnetic ratio obtained through the Einstein-de Haas effect needs correcting by considering the nonzero phonon angular momentum. As is well known, if phonon has nonzero angular momentum, which means that phonon can have rotation, it can be right-handed or left-handed, that is, the phonon is chiral. Actually, we can define the polarization of phonon to represent the phonon chirality, which comes from the circular vibration of sublattices. When the phonon polarization is larger (less) than zero, the phonon is right (left)-handed. In non-magnetic honeycomb AB lattices, with inversion symmetrybrocken, the chiral phonons are found to be of valley contrasting circular polarization and concentrated in Brillouin-zone corners. At valleys, there is a three-fold rotational symmetry endowing phonons with quantized pseudo angular momentum. Then conversation of pseudo angular momentum, which determines the selection rules in phonon-involved intervalley scattering of electrons, must be satisfied. Chiral valley phonons can be measured by polarized infrared absorption or emission. In addition, since the phonon Berry curvature is reported to be nonzero at valley, it can distort phonon transport under a strain gradient, which can act as an effective magnetic field. Thus, a valley phonon Hall effect is theoretically predicted, which is probably a method of measuring chiral valley phonons. In consideration of phonons angular momentum and chiral phonons, photon helicity changed by phonons at Gamma point will be explained reasonably. In conclusion, chiral phonons are present in systems that break time reversal or spatial inversion symmetries. In a magnetic system, where time reversal symmetry is broken, phonons generally carry a nonzero angular momentum, which can influence the classic Einstein-de Haas effect. In a nonequilibrium system, the phonon Hall effect can be observed due to the chiral phonons. In a non-magnetic crystal, with inversion symmetry brocken, phonons in the Brillouin-zone center and corners are chiral and have a quantized pseudo angular momentum, providing an alternative to valleytronics in insulators. We believe that the findings of the phonon angular momentum and the chiral phonons together with phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will lead to the relevant exploration and new development of phonon related subject in condensed matter physics.
      通信作者: 张力发, phyzlf@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574154)资助的课题.
      Corresponding author: Zhang Li-Fa, phyzlf@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574154).
    [1]

    Einstein A, de Haas W J 1915 Verh. Dtsch. Phys. Ges. 17 152

    [2]

    Leduc M A 1887 J. Phys. 6 378

    [3]

    Strohm C, Rikken G, Wyder P 2005 Phys. Rev. Lett. 95 155901

    [4]

    Inyushkin A V, Taldenkov A N 2007 JETP Lett. 86 379

    [5]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [6]

    Kagan Y, Maksimov L A 2008 Phys. Rev. Lett. 100 145902

    [7]

    Qin T, Niu Q, Shi J R 2011 Phys. Rev. Lett. 107 236601

    [8]

    Zhang L 2011 Ph. D. Dissertation (Singapore: National University of Singapore)

    [9]

    Zhang L F, Niu Q 2014 Phys. Rev. Lett. 112 085503

    [10]

    Ray T, Ray D K 1967 Phys. Rev. 164 420

    [11]

    Ioselevich A S, Capellmann H 1995 Phys. Rev. B 51 11446

    [12]

    Qin T, Zhou J, Shi J R 2012 Phys. Rev. B 86 104305

    [13]

    Walton D 1967 Phys. Rev. Lett. 19 305

    [14]

    Reck R A, Fry D L 1969 Phys. Rev. 184 492

    [15]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [16]

    Zeng H L, Cui X D 2016 Wuli 45 505 (in Chinese) [曾华凌, 崔晓冬 2016 物理 45 505]

    [17]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490

    [18]

    Chen S Y, Zheng C X, Fuhrer M S, Yan J 2015 Nano Lett. 15 2526

    [19]

    Zhang L F, Niu Q 2015 Phys. Rev. Lett. 115 115502

    [20]

    Chen S Y, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203

    [21]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770

    [22]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834

    [23]

    Saito R, Jorio A, Souza Filho A G, Dresselhaus G, Dresselhaus M S, Pimenta M A 2001 Phys. Rev. Lett. 88 027401

    [24]

    Malarda L M, Pimentaa M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51

    [25]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [26]

    Wu F, Qu F, MacDonald A H 2015 Phys. Rev. B 91 075310

    [27]

    Chang M C, Niu Q 1996 Phys. Rev. B 53 7010

    [28]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [29]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [30]

    Gorbachev R V, Song S J C, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [31]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [32]

    Tian Y, Shen S P, Cong J Z, Chai Y S, Yan L Q, Wang S G, Sun Y 2016 J. Am. Chem. Soc. 138 782

    [33]

    Goldstein T, Chen S Y, Tong J, Xiao D, Ramasubramaniam A, Yan J 2016 Sci. Rep. 6 28024

    [34]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [35]

    Zhu H, et al. 2018 Science 359 6375

  • [1]

    Einstein A, de Haas W J 1915 Verh. Dtsch. Phys. Ges. 17 152

    [2]

    Leduc M A 1887 J. Phys. 6 378

    [3]

    Strohm C, Rikken G, Wyder P 2005 Phys. Rev. Lett. 95 155901

    [4]

    Inyushkin A V, Taldenkov A N 2007 JETP Lett. 86 379

    [5]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [6]

    Kagan Y, Maksimov L A 2008 Phys. Rev. Lett. 100 145902

    [7]

    Qin T, Niu Q, Shi J R 2011 Phys. Rev. Lett. 107 236601

    [8]

    Zhang L 2011 Ph. D. Dissertation (Singapore: National University of Singapore)

    [9]

    Zhang L F, Niu Q 2014 Phys. Rev. Lett. 112 085503

    [10]

    Ray T, Ray D K 1967 Phys. Rev. 164 420

    [11]

    Ioselevich A S, Capellmann H 1995 Phys. Rev. B 51 11446

    [12]

    Qin T, Zhou J, Shi J R 2012 Phys. Rev. B 86 104305

    [13]

    Walton D 1967 Phys. Rev. Lett. 19 305

    [14]

    Reck R A, Fry D L 1969 Phys. Rev. 184 492

    [15]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [16]

    Zeng H L, Cui X D 2016 Wuli 45 505 (in Chinese) [曾华凌, 崔晓冬 2016 物理 45 505]

    [17]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490

    [18]

    Chen S Y, Zheng C X, Fuhrer M S, Yan J 2015 Nano Lett. 15 2526

    [19]

    Zhang L F, Niu Q 2015 Phys. Rev. Lett. 115 115502

    [20]

    Chen S Y, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203

    [21]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770

    [22]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834

    [23]

    Saito R, Jorio A, Souza Filho A G, Dresselhaus G, Dresselhaus M S, Pimenta M A 2001 Phys. Rev. Lett. 88 027401

    [24]

    Malarda L M, Pimentaa M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51

    [25]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [26]

    Wu F, Qu F, MacDonald A H 2015 Phys. Rev. B 91 075310

    [27]

    Chang M C, Niu Q 1996 Phys. Rev. B 53 7010

    [28]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [29]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [30]

    Gorbachev R V, Song S J C, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [31]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [32]

    Tian Y, Shen S P, Cong J Z, Chai Y S, Yan L Q, Wang S G, Sun Y 2016 J. Am. Chem. Soc. 138 782

    [33]

    Goldstein T, Chen S Y, Tong J, Xiao D, Ramasubramaniam A, Yan J 2016 Sci. Rep. 6 28024

    [34]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [35]

    Zhu H, et al. 2018 Science 359 6375

  • [1] 黄诗浩, 李佳鹏, 李海林, 卢旭星, 孙钦钦, 谢灯. 基于谷间光学声子驱动的锗锡谷间电子转移效应. 物理学报, 2025, 74(3): 036101. doi: 10.7498/aps.74.20240980
    [2] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制. 物理学报, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [3] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [4] 申开波, 刘英光, 李鑫, 李亨宣. 石墨烯纳米网中的声子干涉效应. 物理学报, 2023, 72(12): 123102. doi: 10.7498/aps.72.20230361
    [5] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [6] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [7] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输. 物理学报, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [8] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [9] 邢玉恒, 徐锡方, 张力发. 拓扑声子与声子霍尔效应. 物理学报, 2017, 66(22): 226601. doi: 10.7498/aps.66.226601
    [10] 姜福仕, 赵翠兰. 量子环中量子比特的声子效应. 物理学报, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [11] 过增元, 曹炳阳, 朱宏晔, 张清光. 声子气的状态方程和声子气运动的守恒方程. 物理学报, 2007, 56(6): 3306-3312. doi: 10.7498/aps.56.3306
    [12] 张 滨, 王玉芳, 金庆华, 李宝会, 丁大同. 单壁碳纳米扶手椅、锯齿管声子色散关系的计算. 物理学报, 2005, 54(3): 1325-1329. doi: 10.7498/aps.54.1325
    [13] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响. 物理学报, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [14] 李文博. 用赝角动量方法求解同调谐振子. 物理学报, 2001, 50(12): 2356-2362. doi: 10.7498/aps.50.2356
    [15] 高文斌, A.D.RUDERT, J.MARTIN, H.ZACHARIAS, J.B.HALPERN. C2H221分子转动角动量定向分布(Orientation)及其碰撞弛豫和转移. 物理学报, 1999, 48(5): 862-875. doi: 10.7498/aps.48.862
    [16] 段一士, 冯世祥. 广义相对论中广义协变的角动量守恒定律. 物理学报, 1995, 44(9): 1373-1381. doi: 10.7498/aps.44.1373
    [17] 陈健华, 程香爱. 准旋-角动量标量算符本征值与费密子j-j耦合态的完全分类. 物理学报, 1995, 44(10): 1529-1533. doi: 10.7498/aps.44.1529
    [18] 刘福绥, 范希庆, 刘砚章, 王淮生, 阮英超. 电子多声子作用对散射时间的效应. 物理学报, 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [19] 刘连寿. π-N散射的复角动量. 物理学报, 1965, 21(6): 1123-1131. doi: 10.7498/aps.21.1123
    [20] 戴元本. 在非定域位势下散射矩阵对复角动量的解析性. 物理学报, 1964, 20(10): 947-953. doi: 10.7498/aps.20.947
计量
  • 文章访问数:  17549
  • PDF下载量:  1333
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-09
  • 修回日期:  2018-01-24
  • 刊出日期:  2018-04-05

/

返回文章
返回