-
体黏滞系数是从微观角度认识气体分子黏滞性的重要参数,传统的兆赫兹声频范围的声波吸收方法无法直接应用于声波弛豫效应在千兆赫兹范围的高频领域,而瑞利-布里渊散射则能实现对声波弛豫效应在千兆赫兹的气体体黏滞系数的测量.本文测量了532 nm激光激发的常温下压强分别为1–9 bar的氮气的自发瑞利-布里渊散射光谱,利用已知温度和压强的理论模型对测量光谱进行了比较,获得了准确的散射角.利用该散射角并结合χ2值最小原理反演得到不同压强(4–9 bar)下氮气的平均体黏滞系数为(1.46±0.14)×10-5kg·m-1·s-1,该结果与文献中利用自发瑞利-布里渊散射获得的结果和理论计算结果相近,但与相干瑞利-布里渊散射的测量结果相差明显.利用该平均体黏滞系数对氮气在不同压强下的温度进行了反演,得到各压强下的温度与实际温度的绝对误差小于2.50 K,反演温度的平均值与实际温度误差小于0.15 K,该结果证明了实验测量得到的氮气的体黏滞系数具有较高的准确性,同时也说明利用瑞利-布里渊散射反演气体参数具有较高的准确性和可靠性.
-
关键词:
- 布里渊散射 /
- Tenti S6模型 /
- 体黏滞系数 /
- 温度反演
Bulk viscosity is an important parameter to understand gas viscosity in micro perspective. The traditional ultrasound absorbtion method with acoustic frequencies in a megahertz range cannot be directly applied to high frequencies field, where acoustic waves are in the gigahertz domain. However, gas bulk viscosity at high frequency can be measured by spontaneous Rayleigh-Brillouin scattering (SRBS) and coherent Rayleigh-Brillouin scattering (CRBS). Recent researches show that the bulk viscosity of nitrogen measured by CRBS at a wavelength of 532 nm is obviously different from the values from SRBS in the near-ultraviolet region. In order to obtain accurate bulk viscosity of nitrogen at the wavelength of 532 nm, the SRBS spectra of nitrogen excited by a 532 nm laser are measured in a pressure range from 1 bar to 9 bar at the constant room temperature. The measured SRBS spectrum at the pressure of 7 bar is compared with the theoretical spectrum to obtain optimal scattering angle by using the principle of minimum value of χ2. The theoretical spectrum is calculated by convolving the Tenti S6 model with the instrument transmission function of measurement system. Given that the effect of pressure on the bulk viscosity is negligible, the bulk viscosity value (1.46±0.14)×10-5 kg·m-1-1 of nitrogen at a temperature of 299 K is acquired by averaging the values of bulk viscosity under different pressures (4-9 bar), each value is obtained by comparing the measured spectra at different pressures with the theoretical spectra by using the optimal scattering angle and the principle of minimum value of χ2. The values of bulk viscosity of nitrogen over the pressure of 1-3 bar are not considered because of its big deviation compared with the values under higher pressures (4-9 bar). The results show that the average value of bulk viscosity obtained in our experiment is close to that from the theoretical calculation and SRBS experiments reported in the literature but different obviously from the bulk viscosity obtained by CRBS. In order to testify the bulk viscosity of nitrogen measured in our experiment, it is used to retrieve temperature of nitrogen under pressure ranging from 1 bar to 9 bar. The results show that the absolute error between the retrieved temperature and the reference temperature under different pressures are all below 2.50 K and the difference between the average temperature and the reference temperature is less than 0.15 K. This demonstrates that the measured bulk viscosity of nitrogen in our experiment is accurate and reliable for the gas parameters retrieved by SRBS.-
Keywords:
- Brillouin scattering /
- Tenti S6 model /
- bulk viscosity /
- temperature retrieving
[1] Mayorga M, Velasco R M 1997 Mol. Phys. 92 49
[2] White F M 2006 Viscous Fluid Flow (3rd Ed.) (New York: McGraw-Hill) p287
[3] Witschas B, Gu Z, Ubachs W 2014 Opt. Express 22 29655
[4] Shang J C, Wu T, He X D, Yang C Y 2018 Acta Phys. Sin. 67 037801 (in Chinese) [商景诚, 吴涛, 何兴道, 杨传音 2018 物理学报 67 037801]
[5] Gerakis A, Shneider M N, Stratton B C 2016 Appl. Phys. Lett. 109 031112
[6] Xu J F, Li R S, Zhou J, Liu D H 2001 Acta Opt. Sin. 09 1112 (in Chinese) [徐建峰, 李荣胜, 周静, 刘大禾 2001 光学学报 09 1112]
[7] Shi J L 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [史久林 2013博士学位论文 (武汉: 华中科技大学)]
[8] Herzfeld K F, Litovitz T A, Yeager E 1960 Phys. Today 13 44
[9] Pan X, Shneider M N, Miles R B 2005 Phys. Rev. A 71 45801
[10] Gu Z, Ubachs W 2014 J. Chem. Phys. 141 104320
[11] Gu Z, Ubachs W 2013 Opt. Lett. 38 1110
[12] Vieitez M O, van Duijn E J, Ubachs W, Witschas B, Meijer A, de Wijn A S, Dam N J, van de Water W 2010 Phys. Rev. A 82 043836
[13] Meijer A S, de Wijn A S, Peters M F E, Dam N J, van de Water W 2010 J. Chem. Phys. 133 164315
[14] Gu Z, Witschas B, van de Water W, Ubachs W 2013 Appl. Opt. 19 4640
[15] Witschas B, Lemmerz C, Reitebuch O 2014 Opt. Lett. 39 1972
[16] Mielke A F, Seasholtz R G, Elam K A 2005 Exp. Fluids 39 441
[17] Prangsma G J, Alberga A H, Beenakker J J M 1973 Physica 64 278
[18] Cramer M S 2012 Phys. Fluids 24 531
[19] Pan X, Shneider M N, Miles R B 2004 Phys. Rev. A 69 033814
[20] Cornella B M, Gimelshein S F 2012 Opt. Express 20 12975
[21] Graul J, Lilly T 2014 Opt. Express 22 20117
-
[1] Mayorga M, Velasco R M 1997 Mol. Phys. 92 49
[2] White F M 2006 Viscous Fluid Flow (3rd Ed.) (New York: McGraw-Hill) p287
[3] Witschas B, Gu Z, Ubachs W 2014 Opt. Express 22 29655
[4] Shang J C, Wu T, He X D, Yang C Y 2018 Acta Phys. Sin. 67 037801 (in Chinese) [商景诚, 吴涛, 何兴道, 杨传音 2018 物理学报 67 037801]
[5] Gerakis A, Shneider M N, Stratton B C 2016 Appl. Phys. Lett. 109 031112
[6] Xu J F, Li R S, Zhou J, Liu D H 2001 Acta Opt. Sin. 09 1112 (in Chinese) [徐建峰, 李荣胜, 周静, 刘大禾 2001 光学学报 09 1112]
[7] Shi J L 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [史久林 2013博士学位论文 (武汉: 华中科技大学)]
[8] Herzfeld K F, Litovitz T A, Yeager E 1960 Phys. Today 13 44
[9] Pan X, Shneider M N, Miles R B 2005 Phys. Rev. A 71 45801
[10] Gu Z, Ubachs W 2014 J. Chem. Phys. 141 104320
[11] Gu Z, Ubachs W 2013 Opt. Lett. 38 1110
[12] Vieitez M O, van Duijn E J, Ubachs W, Witschas B, Meijer A, de Wijn A S, Dam N J, van de Water W 2010 Phys. Rev. A 82 043836
[13] Meijer A S, de Wijn A S, Peters M F E, Dam N J, van de Water W 2010 J. Chem. Phys. 133 164315
[14] Gu Z, Witschas B, van de Water W, Ubachs W 2013 Appl. Opt. 19 4640
[15] Witschas B, Lemmerz C, Reitebuch O 2014 Opt. Lett. 39 1972
[16] Mielke A F, Seasholtz R G, Elam K A 2005 Exp. Fluids 39 441
[17] Prangsma G J, Alberga A H, Beenakker J J M 1973 Physica 64 278
[18] Cramer M S 2012 Phys. Fluids 24 531
[19] Pan X, Shneider M N, Miles R B 2004 Phys. Rev. A 69 033814
[20] Cornella B M, Gimelshein S F 2012 Opt. Express 20 12975
[21] Graul J, Lilly T 2014 Opt. Express 22 20117
计量
- 文章访问数: 7042
- PDF下载量: 113
- 被引次数: 0