搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析

严雄伟 王振国 蒋新颖 郑建刚 李敏 荆玉峰

引用本文:
Citation:

基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析

严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰

Analysis of laser diode array pump coupling system based on microlens array

Yan Xiong-Wei, Wang Zhen-Guo, Jiang Xin-Ying, Zheng Jian-Gang, Li Min, Jing Yu-Feng
PDF
导出引用
  • 为了提升高功率固体激光器中激光二极管(LD)面阵抽运场性能,采用几何光学和数理统计分析的方法,建立了基于微透镜阵列匀束的LD面阵抽运耦合系统的数学与物理模型,对微透镜阵列参数与最终耦合输出抽运场参数之间的关系进行分析,明确了微透镜单元F数、微透镜通光单元数以及微透镜阵列空间周期参数的设计原则.经实验测试,优化设计完成的LD面阵抽运耦合系统光场不均匀度为7.9%,耦合效率为90.7%.
    In order to improve the performance of laser diode (LD) array pumping field in high-power solid state laser, an LD array pumping coupling system based on microlens array is used to achieve a high-uniformity pumping source with a longer transmission distance. The homogenizer has two structures based on microlens array, which are called diffracting homogenizer and imaging homogenizer. In this paper, we mainly study imaging microlens array due to its advantages of simple structure, better output homogeneity, flexibility of changing pumping field size, and insensitive to change in the input beam. First, the mathematical expression of the intensity distribution of target surface is derived based on the theory of geometrical optical. According to the geometrical optical formula, we obtain the relationship between the intensity distribution of target surface and system parameters, i.e., maximum incident angle of LD array, the distance between two microlens arrays, and the aperture and focal length of microlens. The boundary condition of microlens Fresnel number is derived based on the LD array beam parameters. Second, the influence of the number of microlens array elements on the output field homogeneity is studied theoreti-cally by the mathematical statistics method. As the input beam is considered to be divided randomly, the central limit theorem is employed to derive the mathematical expression of calculating the integrated output field non-homogeneity. The formula shows that the non-homogeneity is in inverse proportion to the root of the number of microlens array elements and the related maximum and minimum value of input field intensity distribution. And the spatial period of microlens array is designed to be unrelated to the spatial period of LD array to reduce the coherence of LD beam. According to the luminescence field parameters of an LD array consisting of 25 bars, an LD coupling imaging microlens array homogenizer test system is designed and constructed based on the theoretical analysis above. Another contrast system with a different microlens array which is not optimized is constructed at the same time. The coupling characteristics of two coupling systems with different microlens arrays are compared. The simulation and experimental test are carried out. The experimental result accords well with the simulated result, and thus proving the correctness of the theoretical studies. The coupling system with optimized microlens array shows better homogeneous effect with an output field non-homogeneity of 7.9%, and a coupling efficiency of 90.7%, proving the feasibility of the system for LD array pumping field homogenization.
      通信作者: 郑建刚, zjg8861@gmail.com
    • 基金项目: 中国工程物理研究院高能激光科学与技术重点实验室(批准号:HEL2017-05-2)资助的课题.
      Corresponding author: Zheng Jian-Gang, zjg8861@gmail.com
    • Funds: Project supported by the Key Laboratory of Science and Technology on High Energy Laser, CAEP (Grant No. HEL2017-05-2).
    [1]

    Deri R J 2011 Office of Scientific Technical Information Technical Reports LLNL-TR-465931

    [2]

    Diamant R, Berk Y, Cohen S, Klumel G, Levy M, Openhaim Y, Peleg O, Dan Y, Karni Y 2011 Proc. SPIE 8039 80390E

    [3]

    Liu Y, Fang G Z, Ma X Y, Xiao J W 2002 Laser Infrared 32 139 (in Chinese) [刘媛, 方高瞻, 马骁宇, 肖建伟 2002 激光与红外 32 139]

    [4]

    Wu H S, Yin Z G, Li X N 2006 Opt. Instrum. 28 23 (in Chinese) [吴海生, 尹贵增, 李湘宁 2006 光学仪器 28 23]

    [5]

    Wang Z G, Jiang X Y, Zheng J G, Yan X W, Li M Z, Li M 2017 High Power Laser Particle Beams 29 091002

    [6]

    Fu R, Wang G, Wang Z, Ba E, Mu G, Hu X H 1998 Appl. Opt. 37 4000

    [7]

    Golnabi H 2004 Opt. Laser Technol. 36 1

    [8]

    Gao H Y, Fu R L, Qin H, Shi X G 2006 J. Optoelectron. Laser 17 396 (in Chinese) [郜洪云, 傅汝廉, 秦华, 史新刚 2006 光电子激光 17 396]

    [9]

    Jia W, Hu Y M, Li M Z, Luo Y M, Zhang X M 2004 Chin. J. Lasers 31 939 (in Chinese) [贾伟, 胡永明, 李明中, 罗亦明, 张小民 2004 中国激光 31 939]

    [10]

    Liu X J, Fu R L, Qin H, Shi X G, Zhuo R R, Gao H Y 2006 Opt. Precision Eng. 14 167 (in Chinese) [刘晓娟, 傅汝廉, 秦华, 史新刚, 卓然然, 郜洪云 2006 光学精密工程 14 167]

    [11]

    Beach R J 1996 Appl. Opt. 35 2005

    [12]

    Han K Z, Liu X J, Ge Y L, Geng X, Wan Y F, Fu S G, He J L 2012 Chin. J. Lasers 39 0302003 (in Chinese) [韩克祯, 刘晓娟, 葛筱璐, 耿雪, 万云芳, 付圣贵, 何京良 2012 中国激光 39 0302003]

    [13]

    Jia W W, Wang Y F, Huang F 2008 Acta Photon. Sin. 37 1756 (in Chinese) [贾文武, 汪岳峰, 黄峰 2008 光子学报 37 1756]

    [14]

    Jia W W, Wang Y F, Lei C Q, Huang F 2012 Laser Technol. 36 93 (in Chinese) [贾文武, 汪岳峰, 雷呈强, 黄峰 2012 激光技术 36 93]

    [15]

    Buettner A, Zeitner U D 2002 Opt. Eng. 41 2393

    [16]

    Harder I, Lano M, Lindlein N, Schwider J 2004 Proc. SPIE 5456 99

    [17]

    Schreiber P, Dannberg P, Hoefer B, Beckert E 2005 Proc. SPIE 5876 58760K

    [18]

    Wippermann F, Zeitner U D, Dannberg P, Bruer A, Sinzinger S 2007 Opt. Express 15 6218

    [19]

    Huang F, Jia W W, Wang Y F, Dong W 2010 Infrared Laser Eng. 39 61 (in Chinese) [黄峰, 贾文武, 汪岳峰, 董伟 2010 红外与激光工程 39 61]

    [20]

    Huang F, Jia W W, Wang Y F, Shang H, Guo S F 2010 Laser Infrared 40 44 (in Chinese) [黄峰, 贾文武, 汪岳峰, 尚浩, 郭双飞 2010 激光与红外 40 44]

    [21]

    Yin Z Y, Wang Y F, Jia W W, Huang F, Lei C Q, Zhang L L 2012 Laser Infrared 42 119 (in Chinese) [殷智勇, 汪岳峰, 贾文武, 黄峰, 强继平, 雷呈强, 张琳琳 2012 激光与红外 42 119]

    [22]

    Yin Z Y, Wang Y F, Jia W W, Yang X J, Lei C Q, Qiang J P 2012 Chin. J. Lasers 39 0702007 (in Chinese) [殷智勇, 汪岳峰, 贾文武, 杨晓杰, 雷呈强, 强继平 2012 中国激光 39 0702007]

    [23]

    Liu Z H, Shi Z D, Yang H, Li G J, Fang L, Zhou C X 2014 Infrared Laser Eng. 43 2092 (in Chinese) [刘志辉, 石振东, 杨欢, 李国俊, 方亮, 周崇喜 2014 红外与激光工程 43 2092]

    [24]

    Liu Z H, Yang H, Shi Z D, Li G J, Fang L, Zhou C X 2014 Chin. J. Lasers 41 0102005 (in Chinese) [刘志辉, 杨欢, 石振东, 李国俊, 方亮, 周崇喜 2014 中国激光 41 0102005]

    [25]

    Yu J Q, Yin S Y, Yin Z Y, Dong X C, Sun X H, Gou J, Du C L 2014 Opto-Electron. Eng. 41 80 (in Chinese) [余金清, 尹韶云, 殷智勇, 董小春, 孙秀辉, 苟健, 杜春雷 2014 光电工程 41 80]

    [26]

    Lei C Q, Wang Y F, Yin Z Y, Yin S Y, Sun X H, Du C L 2015 High Power Laser Particle Beams 27 091002 (in Chinese) [雷呈强, 汪岳峰, 殷智勇, 尹韶云, 孙秀辉, 杜春雷 2015 强激光与粒子束 27 091002]

    [27]

    Lei C Q, Wang Y F, Yin Z Y, Yin S Y, Sun X H, Zhou Q 2015 Acta Opt. Sin. 35 114005 (in Chinese) [雷呈强, 汪岳峰, 殷智勇, 尹韶云, 孙秀辉, 周全 2015 光学学报 35 114005]

  • [1]

    Deri R J 2011 Office of Scientific Technical Information Technical Reports LLNL-TR-465931

    [2]

    Diamant R, Berk Y, Cohen S, Klumel G, Levy M, Openhaim Y, Peleg O, Dan Y, Karni Y 2011 Proc. SPIE 8039 80390E

    [3]

    Liu Y, Fang G Z, Ma X Y, Xiao J W 2002 Laser Infrared 32 139 (in Chinese) [刘媛, 方高瞻, 马骁宇, 肖建伟 2002 激光与红外 32 139]

    [4]

    Wu H S, Yin Z G, Li X N 2006 Opt. Instrum. 28 23 (in Chinese) [吴海生, 尹贵增, 李湘宁 2006 光学仪器 28 23]

    [5]

    Wang Z G, Jiang X Y, Zheng J G, Yan X W, Li M Z, Li M 2017 High Power Laser Particle Beams 29 091002

    [6]

    Fu R, Wang G, Wang Z, Ba E, Mu G, Hu X H 1998 Appl. Opt. 37 4000

    [7]

    Golnabi H 2004 Opt. Laser Technol. 36 1

    [8]

    Gao H Y, Fu R L, Qin H, Shi X G 2006 J. Optoelectron. Laser 17 396 (in Chinese) [郜洪云, 傅汝廉, 秦华, 史新刚 2006 光电子激光 17 396]

    [9]

    Jia W, Hu Y M, Li M Z, Luo Y M, Zhang X M 2004 Chin. J. Lasers 31 939 (in Chinese) [贾伟, 胡永明, 李明中, 罗亦明, 张小民 2004 中国激光 31 939]

    [10]

    Liu X J, Fu R L, Qin H, Shi X G, Zhuo R R, Gao H Y 2006 Opt. Precision Eng. 14 167 (in Chinese) [刘晓娟, 傅汝廉, 秦华, 史新刚, 卓然然, 郜洪云 2006 光学精密工程 14 167]

    [11]

    Beach R J 1996 Appl. Opt. 35 2005

    [12]

    Han K Z, Liu X J, Ge Y L, Geng X, Wan Y F, Fu S G, He J L 2012 Chin. J. Lasers 39 0302003 (in Chinese) [韩克祯, 刘晓娟, 葛筱璐, 耿雪, 万云芳, 付圣贵, 何京良 2012 中国激光 39 0302003]

    [13]

    Jia W W, Wang Y F, Huang F 2008 Acta Photon. Sin. 37 1756 (in Chinese) [贾文武, 汪岳峰, 黄峰 2008 光子学报 37 1756]

    [14]

    Jia W W, Wang Y F, Lei C Q, Huang F 2012 Laser Technol. 36 93 (in Chinese) [贾文武, 汪岳峰, 雷呈强, 黄峰 2012 激光技术 36 93]

    [15]

    Buettner A, Zeitner U D 2002 Opt. Eng. 41 2393

    [16]

    Harder I, Lano M, Lindlein N, Schwider J 2004 Proc. SPIE 5456 99

    [17]

    Schreiber P, Dannberg P, Hoefer B, Beckert E 2005 Proc. SPIE 5876 58760K

    [18]

    Wippermann F, Zeitner U D, Dannberg P, Bruer A, Sinzinger S 2007 Opt. Express 15 6218

    [19]

    Huang F, Jia W W, Wang Y F, Dong W 2010 Infrared Laser Eng. 39 61 (in Chinese) [黄峰, 贾文武, 汪岳峰, 董伟 2010 红外与激光工程 39 61]

    [20]

    Huang F, Jia W W, Wang Y F, Shang H, Guo S F 2010 Laser Infrared 40 44 (in Chinese) [黄峰, 贾文武, 汪岳峰, 尚浩, 郭双飞 2010 激光与红外 40 44]

    [21]

    Yin Z Y, Wang Y F, Jia W W, Huang F, Lei C Q, Zhang L L 2012 Laser Infrared 42 119 (in Chinese) [殷智勇, 汪岳峰, 贾文武, 黄峰, 强继平, 雷呈强, 张琳琳 2012 激光与红外 42 119]

    [22]

    Yin Z Y, Wang Y F, Jia W W, Yang X J, Lei C Q, Qiang J P 2012 Chin. J. Lasers 39 0702007 (in Chinese) [殷智勇, 汪岳峰, 贾文武, 杨晓杰, 雷呈强, 强继平 2012 中国激光 39 0702007]

    [23]

    Liu Z H, Shi Z D, Yang H, Li G J, Fang L, Zhou C X 2014 Infrared Laser Eng. 43 2092 (in Chinese) [刘志辉, 石振东, 杨欢, 李国俊, 方亮, 周崇喜 2014 红外与激光工程 43 2092]

    [24]

    Liu Z H, Yang H, Shi Z D, Li G J, Fang L, Zhou C X 2014 Chin. J. Lasers 41 0102005 (in Chinese) [刘志辉, 杨欢, 石振东, 李国俊, 方亮, 周崇喜 2014 中国激光 41 0102005]

    [25]

    Yu J Q, Yin S Y, Yin Z Y, Dong X C, Sun X H, Gou J, Du C L 2014 Opto-Electron. Eng. 41 80 (in Chinese) [余金清, 尹韶云, 殷智勇, 董小春, 孙秀辉, 苟健, 杜春雷 2014 光电工程 41 80]

    [26]

    Lei C Q, Wang Y F, Yin Z Y, Yin S Y, Sun X H, Du C L 2015 High Power Laser Particle Beams 27 091002 (in Chinese) [雷呈强, 汪岳峰, 殷智勇, 尹韶云, 孙秀辉, 杜春雷 2015 强激光与粒子束 27 091002]

    [27]

    Lei C Q, Wang Y F, Yin Z Y, Yin S Y, Sun X H, Zhou Q 2015 Acta Opt. Sin. 35 114005 (in Chinese) [雷呈强, 汪岳峰, 殷智勇, 尹韶云, 孙秀辉, 周全 2015 光学学报 35 114005]

  • [1] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 基于微尺度光学偶极阱的一维单原子阵列的实验制备. 物理学报, 2024, 73(10): 103701. doi: 10.7498/aps.73.20240135
    [2] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [3] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析. 物理学报, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [4] 张书赫, 邵梦, 张盛昭, 周金华. 傅里叶域中的光线. 物理学报, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [5] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [6] 王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪. 中波红外微型静态傅里叶变换光谱仪的设计与分析. 物理学报, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [7] 张书赫, 邵梦, 周金华. 光线庞加莱球法构建的结构光场及其传输特性研究. 物理学报, 2018, 67(22): 224204. doi: 10.7498/aps.67.20180918
    [8] 周宁, 张兰芝, 李东伟, 常峻巍, 王毕艺, 汤磊, 林景全, 郝作强. 飞秒平顶光束经微透镜阵列在熔融石英中的成丝及其超连续辐射. 物理学报, 2018, 67(17): 174205. doi: 10.7498/aps.67.20180306
    [9] 张晓晖, 张爽, 孙春生. 粗糙海面对高斯分布激光光束的反射模型推导. 物理学报, 2016, 65(14): 144204. doi: 10.7498/aps.65.144204
    [10] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究. 物理学报, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [11] 王淑莹, 章海军, 张冬仙. 基于微球透镜的任选区高分辨光学显微成像新方法研究. 物理学报, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [12] 孙金霞, 潘国庆, 刘英. 面对称光学系统的初级波像差理论研究. 物理学报, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [13] 赵冬梅, 李志刚, 郭龑强, 李刚, 王军民, 张天才. 弱抽运下光学参量过程中压缩真空场的光子统计性质. 物理学报, 2010, 59(9): 6231-6236. doi: 10.7498/aps.59.6231
    [14] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [15] 邓青华, 彭翰生, 隋 展, 丁 磊, 李明中, 王建军, 唐 军, 罗亦鸣, 林宏奂, 张 锐, 邓 颖, 卢振华. 高功率激光二极管阵列端面抽运放大器新型耦合方式研究. 物理学报, 2008, 57(10): 6340-6347. doi: 10.7498/aps.57.6340
    [16] 熊志铭, 张青川, 陈大鹏, 伍小平, 郭哲颖, 董凤良, 缪正宇, 李超波. 光学读出微梁阵列红外成像及性能分析. 物理学报, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [17] 程光华, 王屹山, 刘 青, 赵 卫, 陈国夫. 用飞秒激光脉冲在PMMA内页面式写入三维光存储的研究. 物理学报, 2004, 53(2): 436-440. doi: 10.7498/aps.53.436
    [18] 李新洲, 袁宁一, 刘道军, 郝建纲. 广义Schwarzschild几何的引力微扰. 物理学报, 2000, 49(6): 1031-1034. doi: 10.7498/aps.49.1031
    [19] 陈岩松, 郑师海, 李德华. 二维光学几何矩变换. 物理学报, 1991, 40(10): 1601-1606. doi: 10.7498/aps.40.1601
    [20] 陈式刚. 量子统计中的线性输运系数理论. 物理学报, 1963, 19(7): 456-465. doi: 10.7498/aps.19.456
计量
  • 文章访问数:  6363
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-19
  • 修回日期:  2018-06-04
  • 刊出日期:  2019-09-20

/

返回文章
返回