搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定

贾梦源 赵刚 周月婷 刘建鑫 郭松杰 吴永前 马维光 张雷 董磊 尹王保 肖连团 贾锁堂

引用本文:
Citation:

基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定

贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂

Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique

Jia Meng-Yuan, Zhao Gang, Zhou Yue-Ting, Liu Jian-Xin, Guo Song-Jie, Wu Yong-Qian, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 噪声免疫腔增强光外差分子光谱技术(NICE-OHMS)由于结合了频率调制光谱与腔增强光谱两种技术,不仅可以将激光耦合到高精细度谐振腔大幅提高腔内功率,还可以实现低气压样品气体的高灵敏测量,因此基于该技术可以实现分子吸收线的饱和,获得亚多普勒光谱,从而能作为激光频率锁定的参考.本文基于光纤激光器的NICE-OHMS技术,将光纤激光器频率锁定到NH3的亚多普勒吸收线上.首先分析了基于Pound-Drever-Hall和DeVoe-Brewer技术实现激光到腔模和调制频率到腔自由光谱区频率锁定的性能,之后在腔内气压为70 mTorr条件下,测量了半高全宽为2.05 MHz的NH3亚多普勒信号,最后将1.53 μm的光纤激光器频率锁定到该亚多普勒吸收线上,相对频率偏差为16.3 kHz,阿伦方差结果显示,136 s积分时间下频率稳定度达到1.6×10-12.
    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful tool for trace gas detection, which is based on the combination of frequency modulation spectroscopy (FMS) for reduction of 1/f noise, especially residual intensity noise, and cavity enhanced absorption spectroscopy (CEAS) for prolonging the interaction length between the laser and the targeted gas. Because of the locking of modulation frequency in FMS to the free spectral range (FSR) of the cavity, NICE-OHMS is immune to the frequency-to-amplitude noise, which is a main limitation to CEAS. Moreover, due to the building of high power inside the cavity, NICE-OHMS can easily saturate the molecular absorption thus obtain sub-Doppler spectroscopy, which possess a high resolution and odd symmetry, and thus can act as a frequency discriminator for the locking of the laser frequency to the transition center. In this paper, a fiber laser based NICE-OHMS system is established and the laser frequency is locked to the sub-Doppler absorption line of NH3 by sub-Doppler NICE-OHMS. To avoid the complex design of high-Q-factor bandpass filter at radio frequency, the frequency νpdh, used for Pound-Drever-Hall (PDH) locking, is generated by the beat frequencies νfsr and νdvb, which are used for NICE-OHMS signal and DeVoe-Brewer (DVB) locking, respectively. The performances of PDH and DVB locking are analysed by the frequency distribution deduced from the error signals, which result in frequency deviations of 4.3 kHz and 0.38 kHz, respectively. Then, the CEAS signal and NICE-OHMS signal in the dispersive phase for the measurement of NH3 at 1.53 μm under 70 mTorr are obtained, which show signal-to-noise ratios of 3.3 dB and 45.5 dB, respectively. Due to the high power built in the cavity, the sub-Doppler structure in the NICE-OHMS signal is obtained in the center of the absorption tansition with a satruation degree of 0.22, which is evaluated by the amplitude ratio between sub-Doppler and Doppler-broadened signals. The linewidth (full width at half maximum) of the sub-Doppler signal of 2.05 MHz is obtained, which is calibrated by the time interval between carrier and sideband. The free-running drift of the laser frequency is estimated by the NICE-OHMS signal and results in 50 MHz over 3 h. While, with locking, the relative deviation of the laser frequency is reduced to 16.3 kHz. In order to evaluate the long term stability of the system, the frequency deviation over 3 h is measured. The Allen deviation analysis shows that the white noise is the main noise of the system in the integration time shorter than 10 s. And the frequency stability can reach to 1.6×10-12 in an integration time of 136 s.
      通信作者: 马维光, mwg@sxu.edu.cn
    • 基金项目: 国家重点研发计划项目(批准号:2017YFA03044200)、长江学者和创新团队发展计划(批准号:IRT13076)、国家自然科学基金(批准号:11434007,61475093,61378047,61675122,61622503,61575113,11704236)、山西省青年科学基金(批准号:2015021105)、山西省回国留学人员科研资助项目(批准号:2017-016)和山西省高等学校重点学科建设项目资助的课题.
      Corresponding author: Ma Wei-Guang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 11434007, 61475093, 61378047, 61675122, 61622503, 61575113, 11704236), the Shanxi Natural Science Foundation, China (Grant No. 2015021105), the Shanxi Scholarship Council of China (Grant No. 2017-016), and the Key Discipline Construction Projects of Shanxi.
    [1]

    Matthey R, Affolderbach C, Mileti G 2011 Opt. Lett. 36 3311

    [2]

    Hall John L 2006 Rev. Mod. Phys. 78 1279

    [3]

    Cancio Pastor P, Consolino L, Giusfredi G, de Natale P, Inguscio M, Yerokhin V A, Pachucki K 2012 Phys. Rev. Lett. 108 143001

    [4]

    Arie A, Schiller S, Gustafson E K, Byer R L 1992 Opt. Lett. 17 1204

    [5]

    Kazovsky L G 1986 J. Lightwave Technol. 4 182

    [6]

    Ohmae N, Moriwaki S, Mio N 2010 Rev. Sci. Instrum. 81 073105

    [7]

    Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W, Wang L J 2017 Chin. Phys. B 26 074209

    [8]

    Hall J L, Hollberg L, Baer T, Robinson H G 1981 Appl. Phys. Lett. 39 680

    [9]

    Kunz P D, Heavner T P, Jefferts S R 2013 Appl. Opt. 52 8048

    [10]

    Webster S A, Oxborrow M, Gill P 2004 Opt. Lett. 29 1497

    [11]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [12]

    Ye J, Ma L S, Hall J L 1996 Opt. Lett. 21 1000

    [13]

    Ma L S, Ye J, Dube P, Hall J L 1999 J. Opt. Soc. Am. B 16 2255

    [14]

    Gianfrani L, Fox R W, Hollberg L 1999 J. Opt. Soc. Am. B 16 2247

    [15]

    Ye J, Ma L S, Hall J L 1997 IEEE Trans. Instrum. Meas. 46 178

    [16]

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese)[韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206]

    [17]

    DeVoe R G, Brewer R G 1984 Phys. Rev. A 30 2827

    [18]

    Zhao G, Hausmaninger T, Ma W, Axner O 2017 Opt. Lett. 42 3109

    [19]

    Dinesan H, Fasci E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198

    [20]

    van Leeuwen N J, Wilson A C 2004 J. Opt. Soc. Am. B 21 1713

    [21]

    Curtis E A, Barwood G P, Huang G, Edwards C S, Gieseking B, Brewer P J 2017 J. Opt. Soc. Am. B 34 950

    [22]

    Taubman M S, Myers T L, Cannon B D, Kelly J F, Williams R M 2004 Spectrochim. Acta A 60 3457

    [23]

    Silander I, Hausmaninger T, Ma W G, Harren F J M, Axner O 2015 Opt. Lett. 40 439

    [24]

    Schmidt F M, Foltynowicz A, Ma W G, Axner O 2007 J. Opt. Soc. Am. B 24 1392

    [25]

    Dinesan H, Facsi E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198

    [26]

    Saraf S, Berceau P, Stochino A, Byer R, Lipa J 2016 Opt. Lett. 41 2189

    [27]

    Chen T L, Liu Y W 2017 Opt. Lett. 42 2447

    [28]

    Ma W G, Silander I, Hausmaninger T, Axner O 2016 J. Quant. Spectrosc. Ra. 168 217

    [29]

    Axner O, Ma W G, Foltynowicz A 2008 J. Opt. Soc. Am. B 25 1166

    [30]

    Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

    [31]

    Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938

    [32]

    Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 128701 (in Chinese)[贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王宝, 肖连团, 贾锁堂 2016 物理学报 65 128701]

    [33]

    Ma W G, Tan W, Zhao G, Li Z X, Fu X F, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 2180 (in Chinese)[马维光, 谭巍, 赵刚, 李志新, 付小芳, 董磊, 张雷, 尹王宝, 贾锁堂 2014 光谱学与光谱分析 34 2180]

  • [1]

    Matthey R, Affolderbach C, Mileti G 2011 Opt. Lett. 36 3311

    [2]

    Hall John L 2006 Rev. Mod. Phys. 78 1279

    [3]

    Cancio Pastor P, Consolino L, Giusfredi G, de Natale P, Inguscio M, Yerokhin V A, Pachucki K 2012 Phys. Rev. Lett. 108 143001

    [4]

    Arie A, Schiller S, Gustafson E K, Byer R L 1992 Opt. Lett. 17 1204

    [5]

    Kazovsky L G 1986 J. Lightwave Technol. 4 182

    [6]

    Ohmae N, Moriwaki S, Mio N 2010 Rev. Sci. Instrum. 81 073105

    [7]

    Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W, Wang L J 2017 Chin. Phys. B 26 074209

    [8]

    Hall J L, Hollberg L, Baer T, Robinson H G 1981 Appl. Phys. Lett. 39 680

    [9]

    Kunz P D, Heavner T P, Jefferts S R 2013 Appl. Opt. 52 8048

    [10]

    Webster S A, Oxborrow M, Gill P 2004 Opt. Lett. 29 1497

    [11]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [12]

    Ye J, Ma L S, Hall J L 1996 Opt. Lett. 21 1000

    [13]

    Ma L S, Ye J, Dube P, Hall J L 1999 J. Opt. Soc. Am. B 16 2255

    [14]

    Gianfrani L, Fox R W, Hollberg L 1999 J. Opt. Soc. Am. B 16 2247

    [15]

    Ye J, Ma L S, Hall J L 1997 IEEE Trans. Instrum. Meas. 46 178

    [16]

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese)[韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206]

    [17]

    DeVoe R G, Brewer R G 1984 Phys. Rev. A 30 2827

    [18]

    Zhao G, Hausmaninger T, Ma W, Axner O 2017 Opt. Lett. 42 3109

    [19]

    Dinesan H, Fasci E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198

    [20]

    van Leeuwen N J, Wilson A C 2004 J. Opt. Soc. Am. B 21 1713

    [21]

    Curtis E A, Barwood G P, Huang G, Edwards C S, Gieseking B, Brewer P J 2017 J. Opt. Soc. Am. B 34 950

    [22]

    Taubman M S, Myers T L, Cannon B D, Kelly J F, Williams R M 2004 Spectrochim. Acta A 60 3457

    [23]

    Silander I, Hausmaninger T, Ma W G, Harren F J M, Axner O 2015 Opt. Lett. 40 439

    [24]

    Schmidt F M, Foltynowicz A, Ma W G, Axner O 2007 J. Opt. Soc. Am. B 24 1392

    [25]

    Dinesan H, Facsi E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198

    [26]

    Saraf S, Berceau P, Stochino A, Byer R, Lipa J 2016 Opt. Lett. 41 2189

    [27]

    Chen T L, Liu Y W 2017 Opt. Lett. 42 2447

    [28]

    Ma W G, Silander I, Hausmaninger T, Axner O 2016 J. Quant. Spectrosc. Ra. 168 217

    [29]

    Axner O, Ma W G, Foltynowicz A 2008 J. Opt. Soc. Am. B 25 1166

    [30]

    Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

    [31]

    Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938

    [32]

    Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 128701 (in Chinese)[贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王宝, 肖连团, 贾锁堂 2016 物理学报 65 128701]

    [33]

    Ma W G, Tan W, Zhao G, Li Z X, Fu X F, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 2180 (in Chinese)[马维光, 谭巍, 赵刚, 李志新, 付小芳, 董磊, 张雷, 尹王宝, 贾锁堂 2014 光谱学与光谱分析 34 2180]

  • [1] 奚小明, 杨保来, 王鹏, 张汉伟, 王小林, 韩凯, 王泽锋, 许晓军, 陈金宝. 万瓦级光纤激光双色镜合成技术. 物理学报, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [2] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [3] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [4] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [5] 陈益沙, 廖雷, 李进延. 数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究. 物理学报, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [6] 陈恺, 祝连庆, 牛海莎, 孟阔, 董明利. 基于1556 nm光纤激光器频率分裂效应的应力测量. 物理学报, 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [7] 饶云江. 长距离分布式光纤传感技术研究进展. 物理学报, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [8] 张曦, 刘慧, 姜坤良, 王进起, 熊转贤, 贺凌翔, 吕宝龙. 利用传输腔技术实现镱原子光钟光晶格场的频率稳定. 物理学报, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [9] 阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚. 时间频率基准装置的研制现状. 物理学报, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [10] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [11] 熊水东, 徐攀, 马明祥, 胡正良, 胡永明. 掺铒光纤环形激光器中饱和吸收光栅瞬态特性引发跳模的实验研究. 物理学报, 2014, 63(13): 134206. doi: 10.7498/aps.63.134206
    [12] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [13] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成. 物理学报, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [14] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [15] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [16] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [17] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [18] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究. 物理学报, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [19] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [20] 吕昌贵, 崔一平, 王著元, 恽斌峰. 光纤布拉格光栅法布里-珀罗腔纵模特性研究. 物理学报, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
计量
  • 文章访问数:  6802
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-28
  • 修回日期:  2018-03-16
  • 刊出日期:  2019-05-20

/

返回文章
返回