搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚大气压六相交流电弧放电等离子体射流特性数值模拟

郭恒 张晓宁 聂秋月 李和平 曾实 李志辉

引用本文:
Citation:

亚大气压六相交流电弧放电等离子体射流特性数值模拟

郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉

Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet

Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui
PDF
导出引用
  • 以临近空间高超声速飞行器和航天器再入大气环境飞行过程中其表面产生的高密度非平衡态等离子体为研究对象,基于本研究组所建立的多相交流电弧放电等离子体实验平台(MPX-2015),开展了非平衡态氩等离子体射流特性的二维数值模拟研究.在亚音速条件下二维、非平衡数值模拟所得到的计算结果与实验测量结果符合良好.超音速条件下的数值模拟结果表明,随着真空腔压强的降低,等离子体射流流速明显增大,覆盖钝体头部的等离子体鞘套的厚度先减小,而后又增加,鞘套的空间均匀性以及等离子体向钝体表面的总传热量均显著降低,而钝体头部的局部电子数密度则增大.数值模拟结果为在MPX-2015上开展超音速条件下的实验研究提供了理论指导.
    In the re-entry process of hypersonic vehicle in near space,the violent interaction between the vehicle and the surrounding air will ionize the air and leaves a complex environment in the vicinity of the vehicle surface.Both the flow field and the communication between the vehicle and the controlling center on the earth are significantly affected by the generated plasma layers.This will result in serious system operation problems such as the communication blackout or radio blackout.Numerical modelling is one of the most widely used methods to investigate such complicated physical-chemical processes involving coupled magneto-hydrodynamics,heat transfer,dissociation,ionization,excitation and their reverse processes.Due to the strong collision,non-uniform and non-equilibrium characteristics of the plasma layers formed in the vicinity of the vehicle surface,a self-consistent physical-mathematical model,as well as a database for the transport properties of non-equilibrium plasmas,describing the non-equilibrium features of plasmas is one of the pre-requisites for numerical simulations.This paper focuses on the non-equilibrium plasmas produced near the bluff body surface in the re-entry process of hypersonic vehicles in near space,and a new non-equilibrium plasma model which has been developed previously by our group is employed for conducting two-dimensional (2D) simulations on the characteristics of the non-equilibrium argon plasma jets based on the multiphase gas discharge plasma experimental platform-2015(MPX-2015) established in our laboratory.The modelling is conducted under two different flow conditions, i.e.,the sub-sonic flow condition and the super-sonic flow condition.Under the sub-sonic flow condition,the 2D nonequilibrium modeling results are consistent well with the experimental measurements which validates the reliability of the non-equilibrium physical-mathematical model,as well as the developed computer codes in this study.The modeling results under the super-sonic flow conditions show that the spatial uniformity of the plasma layer surrounding the bluff body,as well as the total heat flux to the bluff body surface from plasmas,decreases significantly with the increase of the plasma jet velocity;while the local electron number density increases in the vicinity of the head of the bluff body, the thickness of the plasma layer surrounding the bluff body first decreases,and then increases.These modelling results provide a theoretical guidance for conducting experimental studies under a super-sonic flow condition on MPX-2015. In the future research,we will extend the physical-mathematical model to investigate of the transient,non-equilibrium features of the air discharge plasmas,and the complicated interactions between the plasma jet and the surrounding air, and/or the downstream bluff body under different operating conditions.Simultaneously,we will also try to develop the in-situ experimental methods to obtain the spatiotemporal distributions of the temperature,velocity and species concentrations in the plasma layer,and conduct a comparison between modelling results and measured data.
      通信作者: 李和平, liheping@tsinghua.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB744100)资助的课题.
      Corresponding author: Li He-Ping, liheping@tsinghua.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB744100).
    [1]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445

    [2]

    Morris R A, Bench P M, Golden K E, Sutton E A 1999 37th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 11-14, 1999 AIAA-99-0630

    [3]

    Evans J S, Schexnayder Jr C J, Huber P W 1973 NASA TN D-7332

    [4]

    Gillman E D, Foster J E, Blankson I M 2010 NASA/TM-2010-216220

    [5]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [6]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference Capua, Italy, May 16-20, 2005 AIAA-2005-3443

    [7]

    Akey N D 1971 NASA Special Publication 252 19

    [8]

    Watillon P, Berthe P, Chavagnac C 2003 AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 years Dayton, OH, USA, July 14-17, 2003 AIAA-2003-2913

    [9]

    Shirouzu M, Yamamoto M, Shirouzu M, Yamamoto M 1996 Space Plane and Hypersonic Systems and Technology Conference Norfolk, VA, USA, November 18-22, 1996 AIAA-96-4524-CP

    [10]

    Yanagihara M, Munenaga T 2004 24th International Congress of the Aeronautical Sciences Yokohama, Japan, August 29-September 3, 2004 p2004-7

    [11]

    Sakurai H, Kobayasi M, Yamazaki I, Shirouzu M, Yamamoto M 1997 Acta Astronaut. 40 105

    [12]

    Auweter Kurtz M, Kurtz H L, Laure S 1996 J. Propul. Power 12 1053

    [13]

    Zhao L, Liu X X, Su H S 2015 J. Telemetry, Tracking and Command 36 28 (in Chinese) [赵良, 刘秀祥, 苏汉生 2015 遥测遥控 36 28]

    [14]

    Hermann T, Löhle S, Zander F, Fulge H, Fasoulas S 2016 J. Thermophys. Heat Transf. 30 673

    [15]

    Guo H, Su Y B, Li H P, Zeng S, Nie Q Y, Li Z X, Li Z H 2018 Acta Phys. Sin. 67 045201 (in Chinese) [郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉 2018 物理学报 67 045201]

    [16]

    Wang Z, Wu G Q, Ge N, Li H P, Bao C Y 2010 IEEE Trans. Plasma Sci. 38 2906

    [17]

    Yao Y, Hossain M M, Watanabe T, Matsuura T, Funabiki F, Yano T 2008 Chem. Eng. J. 139 390

    [18]

    Watanabe T, Liu Y, Tanaka M 2014 Plasma Chem. Plasma Process. 34 443

    [19]

    Savino R, Paterna D, Fumo M S, D’Elia M 2010 Open Aero. Eng. J. 3 76

    [20]

    Scalabrin L C, Boyd I D 2006 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference San Francisco, CA, USA, June 5-8, 2006 AIAA-2006-3773

    [21]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA-TP-2867

    [22]

    Candler G V, MacCormack R W 1991 J. Thermophys. Heat Transf. 5 266

    [23]

    Huang H, Qu Z H 1999 Acta Aerodyn. Sin. 17 462 (in Chinese) [黄华, 瞿章华 1999 空气动力学学报 17 462]

    [24]

    Sun S R, Wang H X 2015 Acta Phys. Sin. 64 143401 (in Chinese) [孙素蓉, 王海兴 2015 物理学报 64 143401]

    [25]

    Wang H X, Sun S R, Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese) [王海兴, 孙素蓉, 陈士强 2012 物理学报 61 195203]

    [26]

    Wang H X, Sun W P, Sun S R, Murphy A B, Ju Y 2014 Plasma Chem. Plasma Process. 34 559

    [27]

    Niu C, Chen Z, Rong M, Wang C, Wu Y, Yang F, Wang X, Pang Q 2016 J. Phys. D: Appl. Phys. 49 405204

    [28]

    Wang C, Wu Y, Chen Z, Yang F, Feng Y, Rong M, Zhang H 2016 Plasma Sci. Technol. 18 732

    [29]

    Rat V, Murphy A B, Aubreton J, Elchinger M F, Fauchais P 2008 J. Phys. D: Appl. Phys. 41 183001

    [30]

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 Phys. Plasmas 20 033508

    [31]

    Li H P, Zhang X N, Xia W D 2013 Phys. Plasmas 20 033509

    [32]

    Zhang X N, Li H P, Murphy A B, Xia W D 2015 Plasma Sources Sci. Technol. 24 035011

    [33]

    Zhang X N, Li H P, Xia W D 2013 High Voltage Engineering 39 1640 (in Chinese) [张晓宁, 李和平, 夏维东 2013 高电压技术 39 1640]

    [34]

    Zhang X N 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [张晓宁 2015 博士学位论文 (合肥: 中国科学技术大学)]

    [35]

    Tong B G, Kong X Y, Deng G H 1990 Aerodynamics (Beijing: Higher Education Press) p73 (in Chinese) [童秉纲, 孔祥言, 邓国华 1990 气体动力学 (北京: 高等教育出版社) 第73页]

    [36]

    Fang M, Li Z H, Li Z H, Tian Y 2017 Acta Aerodyn. Sin. 35 39 (in Chinese) [方明, 李志辉, 李中华, 田颖 2017 空气动力学学报 35 39]

    [37]

    Li G, Xu Y J, Mu K J, Nie C Q, Zhu J Q, Zhang Y, Li H M 2008 Acta Phys. Sin. 57 6444 (in Chinese) [李钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张翼, 李汉明 2008 物理学报 57 6444]

    [38]

    Meng X, Pan W X, Wu C K 2004 J. Eng. Thermophys. 25 490 (in Chinese) [孟显, 潘文霞, 吴承康 2004 工程热物理学报 25 490]

  • [1]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445

    [2]

    Morris R A, Bench P M, Golden K E, Sutton E A 1999 37th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 11-14, 1999 AIAA-99-0630

    [3]

    Evans J S, Schexnayder Jr C J, Huber P W 1973 NASA TN D-7332

    [4]

    Gillman E D, Foster J E, Blankson I M 2010 NASA/TM-2010-216220

    [5]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [6]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference Capua, Italy, May 16-20, 2005 AIAA-2005-3443

    [7]

    Akey N D 1971 NASA Special Publication 252 19

    [8]

    Watillon P, Berthe P, Chavagnac C 2003 AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 years Dayton, OH, USA, July 14-17, 2003 AIAA-2003-2913

    [9]

    Shirouzu M, Yamamoto M, Shirouzu M, Yamamoto M 1996 Space Plane and Hypersonic Systems and Technology Conference Norfolk, VA, USA, November 18-22, 1996 AIAA-96-4524-CP

    [10]

    Yanagihara M, Munenaga T 2004 24th International Congress of the Aeronautical Sciences Yokohama, Japan, August 29-September 3, 2004 p2004-7

    [11]

    Sakurai H, Kobayasi M, Yamazaki I, Shirouzu M, Yamamoto M 1997 Acta Astronaut. 40 105

    [12]

    Auweter Kurtz M, Kurtz H L, Laure S 1996 J. Propul. Power 12 1053

    [13]

    Zhao L, Liu X X, Su H S 2015 J. Telemetry, Tracking and Command 36 28 (in Chinese) [赵良, 刘秀祥, 苏汉生 2015 遥测遥控 36 28]

    [14]

    Hermann T, Löhle S, Zander F, Fulge H, Fasoulas S 2016 J. Thermophys. Heat Transf. 30 673

    [15]

    Guo H, Su Y B, Li H P, Zeng S, Nie Q Y, Li Z X, Li Z H 2018 Acta Phys. Sin. 67 045201 (in Chinese) [郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉 2018 物理学报 67 045201]

    [16]

    Wang Z, Wu G Q, Ge N, Li H P, Bao C Y 2010 IEEE Trans. Plasma Sci. 38 2906

    [17]

    Yao Y, Hossain M M, Watanabe T, Matsuura T, Funabiki F, Yano T 2008 Chem. Eng. J. 139 390

    [18]

    Watanabe T, Liu Y, Tanaka M 2014 Plasma Chem. Plasma Process. 34 443

    [19]

    Savino R, Paterna D, Fumo M S, D’Elia M 2010 Open Aero. Eng. J. 3 76

    [20]

    Scalabrin L C, Boyd I D 2006 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference San Francisco, CA, USA, June 5-8, 2006 AIAA-2006-3773

    [21]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA-TP-2867

    [22]

    Candler G V, MacCormack R W 1991 J. Thermophys. Heat Transf. 5 266

    [23]

    Huang H, Qu Z H 1999 Acta Aerodyn. Sin. 17 462 (in Chinese) [黄华, 瞿章华 1999 空气动力学学报 17 462]

    [24]

    Sun S R, Wang H X 2015 Acta Phys. Sin. 64 143401 (in Chinese) [孙素蓉, 王海兴 2015 物理学报 64 143401]

    [25]

    Wang H X, Sun S R, Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese) [王海兴, 孙素蓉, 陈士强 2012 物理学报 61 195203]

    [26]

    Wang H X, Sun W P, Sun S R, Murphy A B, Ju Y 2014 Plasma Chem. Plasma Process. 34 559

    [27]

    Niu C, Chen Z, Rong M, Wang C, Wu Y, Yang F, Wang X, Pang Q 2016 J. Phys. D: Appl. Phys. 49 405204

    [28]

    Wang C, Wu Y, Chen Z, Yang F, Feng Y, Rong M, Zhang H 2016 Plasma Sci. Technol. 18 732

    [29]

    Rat V, Murphy A B, Aubreton J, Elchinger M F, Fauchais P 2008 J. Phys. D: Appl. Phys. 41 183001

    [30]

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 Phys. Plasmas 20 033508

    [31]

    Li H P, Zhang X N, Xia W D 2013 Phys. Plasmas 20 033509

    [32]

    Zhang X N, Li H P, Murphy A B, Xia W D 2015 Plasma Sources Sci. Technol. 24 035011

    [33]

    Zhang X N, Li H P, Xia W D 2013 High Voltage Engineering 39 1640 (in Chinese) [张晓宁, 李和平, 夏维东 2013 高电压技术 39 1640]

    [34]

    Zhang X N 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [张晓宁 2015 博士学位论文 (合肥: 中国科学技术大学)]

    [35]

    Tong B G, Kong X Y, Deng G H 1990 Aerodynamics (Beijing: Higher Education Press) p73 (in Chinese) [童秉纲, 孔祥言, 邓国华 1990 气体动力学 (北京: 高等教育出版社) 第73页]

    [36]

    Fang M, Li Z H, Li Z H, Tian Y 2017 Acta Aerodyn. Sin. 35 39 (in Chinese) [方明, 李志辉, 李中华, 田颖 2017 空气动力学学报 35 39]

    [37]

    Li G, Xu Y J, Mu K J, Nie C Q, Zhu J Q, Zhang Y, Li H M 2008 Acta Phys. Sin. 57 6444 (in Chinese) [李钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张翼, 李汉明 2008 物理学报 57 6444]

    [38]

    Meng X, Pan W X, Wu C K 2004 J. Eng. Thermophys. 25 490 (in Chinese) [孟显, 潘文霞, 吴承康 2004 工程热物理学报 25 490]

  • [1] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [2] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [3] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [4] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [5] 郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉. 亚大气压六相交流电弧等离子体射流特性研究:实验测量. 物理学报, 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [6] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [7] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究. 物理学报, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [8] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法. 物理学报, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [9] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [10] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [11] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [12] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [13] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [14] 庞学霞, 邓泽超, 董丽芳. 不同电离度下大气等离子体粒子行为的数值模拟. 物理学报, 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [15] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟. 物理学报, 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [16] 欧阳建明, 邵福球, 王 龙, 房同珍, 刘建全. 一维大气等离子体化学过程数值模拟. 物理学报, 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [17] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [18] 段耀勇, 郭永辉, 王文生, 邱爱慈. 钨丝阵等离子体Z箍缩的数值模拟. 物理学报, 2004, 53(8): 2654-2660. doi: 10.7498/aps.53.2654
    [19] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟. 物理学报, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  7433
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-29
  • 修回日期:  2018-01-04
  • 刊出日期:  2018-03-05

/

返回文章
返回