搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天光背景下混浊大气中成像质量的分析方法

郑鑫 武鹏飞 饶瑞中

引用本文:
Citation:

天光背景下混浊大气中成像质量的分析方法

郑鑫, 武鹏飞, 饶瑞中

Image quality analysis method under background radiation in turbid atmosphere

Zheng Xin, Wu Peng-Fei, Rao Rui-Zhong
PDF
导出引用
  • 调制传递函数(MTF)定量描述混浊介质对图像质量的影响,它是混浊介质的固有光学特性,利用等效原理可以获得MTF从低频到高频的完整特征.在实际应用中,混浊介质中的图像质量不仅取决于介质的MTF,还与图像的背景辐射密切相关.本文从混浊大气中图像退化机理出发,理论分析了空间频域中天光背景下图像质量的退化过程.参考等效原理,提出了一种考虑天光背景的表观MTF,得到了表观MTF与介质MTF和天光背景的定量关系,从而得到了一种分析背景辐射下混浊介质中图像质量的有效便捷方法.针对图像质量优化方法,从空间频域的角度提出了一种评价原则.
    Image quality is seriously degraded when propagating through the turbid atmosphere. It is practical to characterize the degradation process in terms of modulation transfer function (MTF). The MTF can describe the effect of the turbid medium on imaging quantitatively in spatial frequency domain, including attenuation and multiple scattering. It is inherent property of the turbid medium. The whole spatial frequency characteristic of the turbid atmosphere MTF can be acquired through the equivalence principle, i, e., the equivalence between the MTF of a turbid medium and the transmitted radiance from the medium under isotropic diffuse illumination. In practice, the image quality is not only affected by the turbid medium MTF but also related tightly to the background radiation. The influence of scattered background radiation on imaging was almost not considered in the past when dealing with the imaging problem in the turbid atmosphere. In this paper, this issue is considered in detail. The analysis results demonstrate that the scattered background radiation increases the zero frequency component of image in spatial frequency domain. As a result, it degrades the image contrast seriously in spatial domain. Based on the optical model of image degradation in the atmosphere, the theoretical analysis is carried out to study the image quality degradation process in spatial frequency domain. The formalized MTF is proposed, which considers the effects of attenuation, multiple scattering and scattered background radiation by the turbid medium on image quality. The quantitative relation among the formalized MTF, turbid medium MTF and background radiation is confirmed. Image blur simulations show that the results from the formalized MTF are more consistent with actual scenes than results only from turbid medium MTF. Thus, the formalized MTF can describe the image degradation process through atmosphere comprehensively. The image restoration results indicate that the formalized MTF method performs better than dark channel prior method. In order to evaluate different image restoration methods effectively in spatial frequency domain, spectrum area (AS) is proposed. The AS is the area of middle-high frequency information of the region of interest in restored image. So AS can represent the scene details in the restored image. The higher the AS, the better the image quality is, which is demonstrated in this paper. In conclusion, the formalized MTF provides a more effective method for image quality analysis and assessment. Additionally, it also supplies a new standpoint for researching atmospheric degradation mechanism and correction method for imaging in turbid atmosphere. Then, AS can be an effective reference for correction to the method evaluation.
      通信作者: 武鹏飞, wupengfei@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:41505023)资助的课题.
      Corresponding author: Wu Peng-Fei, wupengfei@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41505023).
    [1]

    Eismann M T 2012 Hyperspectral Remote Sensing (Washington:SPIE Press) pp1-81

    [2]

    Wang Z, Alan C B 2006 Modern Image Quality Assessment (USA:Morgan Claypool Publishers) pp33-36

    [3]

    Xiong X H 2004 Sci. Survey. Map. 29 1 (in Chinese)[熊兴华 2004 测绘科学 29 1]

    [4]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) pp514-543 (in Chinese)[饶瑞中 2012 现代大气光学 (北京:科学出版社) 第514543页]

    [5]

    LeMaster D A, Esimann M T 2012 Proc. SPIE 8355 1

    [6]

    Esimann M T, LeMaster D A 2013 Opt. Eng. 52 046201

    [7]

    Lutomirski R F 1978 Appl. Opt. 17 3915

    [8]

    Kopeika N S 1982 J. Opt. Soc. Am. 72 548

    [9]

    Sadot D, Kopeika N S 1993 J. Opt. Soc. Am. A 10 172

    [10]

    Wells W H 1969 J. Opt. Soc. Am. 59 686

    [11]

    Kuga Y, Ishimaru A 1986 Appl. Opt. 25 4382

    [12]

    Rao R Z 2012 Chin. Opt. Lett. 10 020101

    [13]

    Wu P F 2013 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[武鹏飞 2013 博士学位论文(北京:中国科学院大学)]

    [14]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [15]

    Narasimhan S G, Nayar S K 2003 IEEE Trans. PAMI 25 713

    [16]

    Norman S K 1998 A System Engineering Approach to Imaging (Washington:SPIE Press) pp517-541

    [17]

    Gerald C H (translated by Yan J X, Yu X, Xie T B, Yao H J) 2015 Electro-Optical Imaging System Performance (Fourth Edition)(Beijing:National Defense Industry Press) pp121-141 (in Chinese)[Gerald C H (阎吉祥, 俞信, 解天宝, 姚和军 译) 2015 光电成像系统性能(第四版)(北京:国防工业出版社)第121141页]

    [18]

    He K M, Sun J, Tang X O 2009 IEEE Trans. PAMI 33 2341

    [19]

    He K M, Sun J, Tang X O 2013 IEEE Trans. PAMI 35 1397

    [20]

    Gonzalez R C, Woods R E 2002 Digital Image Processing (Second Edition)(New Jersey:Prentice Hall) pp261-265

  • [1]

    Eismann M T 2012 Hyperspectral Remote Sensing (Washington:SPIE Press) pp1-81

    [2]

    Wang Z, Alan C B 2006 Modern Image Quality Assessment (USA:Morgan Claypool Publishers) pp33-36

    [3]

    Xiong X H 2004 Sci. Survey. Map. 29 1 (in Chinese)[熊兴华 2004 测绘科学 29 1]

    [4]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) pp514-543 (in Chinese)[饶瑞中 2012 现代大气光学 (北京:科学出版社) 第514543页]

    [5]

    LeMaster D A, Esimann M T 2012 Proc. SPIE 8355 1

    [6]

    Esimann M T, LeMaster D A 2013 Opt. Eng. 52 046201

    [7]

    Lutomirski R F 1978 Appl. Opt. 17 3915

    [8]

    Kopeika N S 1982 J. Opt. Soc. Am. 72 548

    [9]

    Sadot D, Kopeika N S 1993 J. Opt. Soc. Am. A 10 172

    [10]

    Wells W H 1969 J. Opt. Soc. Am. 59 686

    [11]

    Kuga Y, Ishimaru A 1986 Appl. Opt. 25 4382

    [12]

    Rao R Z 2012 Chin. Opt. Lett. 10 020101

    [13]

    Wu P F 2013 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[武鹏飞 2013 博士学位论文(北京:中国科学院大学)]

    [14]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [15]

    Narasimhan S G, Nayar S K 2003 IEEE Trans. PAMI 25 713

    [16]

    Norman S K 1998 A System Engineering Approach to Imaging (Washington:SPIE Press) pp517-541

    [17]

    Gerald C H (translated by Yan J X, Yu X, Xie T B, Yao H J) 2015 Electro-Optical Imaging System Performance (Fourth Edition)(Beijing:National Defense Industry Press) pp121-141 (in Chinese)[Gerald C H (阎吉祥, 俞信, 解天宝, 姚和军 译) 2015 光电成像系统性能(第四版)(北京:国防工业出版社)第121141页]

    [18]

    He K M, Sun J, Tang X O 2009 IEEE Trans. PAMI 33 2341

    [19]

    He K M, Sun J, Tang X O 2013 IEEE Trans. PAMI 35 1397

    [20]

    Gonzalez R C, Woods R E 2002 Digital Image Processing (Second Edition)(New Jersey:Prentice Hall) pp261-265

  • [1] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [2] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] 邓文娟, 朱斌, 王壮飞, 彭新村, 邹继军. 变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性. 物理学报, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [4] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [5] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [6] 张美, 李奎念, 李阳, 盛亮, 张艳红. 一种新型的液闪阵列成像屏空间分辨特性. 物理学报, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [7] 郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月. 分形结构稀疏孔径阵列的成像性能. 物理学报, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [8] 张敏睿, 贺正权, 汪韬, 田进寿. 偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析. 物理学报, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [9] 段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民. Bayer滤波型彩色相机调制传递函数测量方法. 物理学报, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [10] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定. 物理学报, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [11] 张瑜, 刘秉琦, 闫宗群, 华文深, 李刚. 背景辐射对被动测距精度影响分析及实验研究. 物理学报, 2015, 64(3): 034216. doi: 10.7498/aps.64.034216
    [12] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析. 物理学报, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [13] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [14] 袁永腾, 郝轶聃, 侯立飞, 涂绍勇, 邓博, 胡昕, 易荣清, 曹柱荣, 江少恩, 刘慎业, 丁永坤, 缪文勇. 流体力学不稳定性增长测量方法研究. 物理学报, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [15] 张荣福, 王涛, 潘超, 王亮亮, 庄松林. 波前编码系统景深延拓性能研究. 物理学报, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [16] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [17] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析. 物理学报, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [18] 戚巽骏, 林 斌, 曹向群, 陈钰清. 基于调制传递函数的光学低通滤波器评价模型与实验研究. 物理学报, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [19] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [20] 向际鹰, 吴 震, 曾绍群, 骆清铭, 张 平, 黄德修. 弱相干扫描层析成像系统的三维传递函数分析. 物理学报, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
计量
  • 文章访问数:  6115
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-10
  • 修回日期:  2018-02-08
  • 刊出日期:  2019-04-20

/

返回文章
返回