-
主要研究了室温下微波场缀饰的铯Rydberg原子的电磁感应透明-Autler-Townes (EIT-AT)光谱.首先,以铯原子6S1/2 6P3/2 50S1/2形成阶梯型三能级系统,利用强耦合光作用于6P3/2 50S1/2的Rydberg跃迁,弱探测光耦合基态跃迁6S1/2 6P3/2并探测由耦合光形成的电磁感应透明(EIT)效应.然后,以频率为30.582 GHz的微波电场耦合相邻的Rydberg能级50S1/2 50P1/2产生微波AT分裂.利用Rydberg EIT探测微波耦合相邻Rydberg能级产生的AT分裂,形成EIT-AT光谱,进而实现微波电场的测量.当微波场的强度增加到一定值时,EIT-AT光谱表现为多峰光谱结构.分析EIT-AT多峰光谱的成因,发现这主要是由场的不均匀性导致的,一定的EIT-AT光谱特征对应于特定的非均匀场分布.研究表明,利用Rydberg EIT-AT光谱可以实现微波电场的测量,利用其光谱特征可实现微波场的实时监测,进而提出了一种提高微波场空间分辨率的测量方法.
-
关键词:
- Rydberg原子的电磁感应透明效应 /
- 微波场 /
- Autler-Townes分裂
We present an electromagnetically induced transparency and Aulter-Townes (EIT-AT) spectrum of a Rydberg three-level atom that is dressed with a microwave field in a room-temperature cesium cell. The EIT is a quantum coherent effect produced by the interaction of atoms with electromagnetic waves, which leads to the decrease of the absorption for a weak resonant probe laser. AT splitting refers to the phenomenon, that the absorption line splits when an electromagnetic field that is in resonance or near resonance acts on the transition of atoms. Rydberg atoms are extremely sensitive to an external electric field due to their large polarizabilities and microwave transition dipole moments, which can be used to measure the external field. In this work, a Rydberg three-level EIT is used to detect Rydberg atom and AT splitting induced by the microwave field. Cesium levels 6S1/2, 6P3/2 and 50S1/2 constitute a Rydberg three-level system, in which a weak probe laser locking to the transition from 6S1/2 to 6P3/2 couples ground-state transition and the strong coupling laser resonates on the Rydberg transition from 6P2/3 to 50S1/2. The two Rydberg levels 50S1/2 and 50P1/2 are coupled with the microwave field at a frequency of 30.852 GHz, leading to the AT splitting of EIT line and forming an EIT-AT spectrum, which is used to measure the electric field amplitude of microwave. In order to further study the EIT-AT splitting characteristics of the Rydberg levels, we carry out a series of measurements by changing the microwave field. The experimental results show a broadened EIT-AT signal for the weak field range and the four-peak spectrum for the strong field, which is attributed to the inhomogeneity of the microwave field. The microwave in cesium cell, emitted by a function generator, shows inhomogeneous behavior such that the atoms interacting with the laser field experience the different fields, leading to the line broadened and multi-peak EIT-AT spectra. For the microwave transition of nS1/2-nP1/2 in this paper, a pair of EIT-AT lines should be obtained for an electric field value. The broadening of the EIT-AT spectrum and the multi-peak structure here are due to the inhomogeneity of the microwave field measurement. We propose a method to increase the spatial resolution by reducing the length of cesium cell. The result in this work provides a method of measuring the field amplitude and monitoring the distribution of microwave electric field, meanwhile the spatial resolution of the measurements can be improved by reducing the size of the cell.-
Keywords:
- electromagnetically induced transparency of Rydberg atom /
- microwave field /
- Aulter-Townes splitting
[1] Boyd R W 2008 Nonlinear Optics (Beijing: Academic Press) p55
[2] Harris S E 1997 Phys. Today 50 36
[3] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
[4] Scully M O, Fleischhauer M 1992 Phys. Rev. Lett. 69 1360
[5] Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783
[6] Picque J L, Pinard J 1976 J. Phys. B 9 L77
[7] Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270
[8] Autler S H, Townes C H 1955 Phys. Rev. 100 703
[9] Scully M O, Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press) p205
[10] Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835
[11] Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) p11
[12] Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208
[13] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[14] Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020
[15] Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[16] Gordon J A, Holloway C L, Schwarzkopf A, Ander-son D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104
[17] Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002
[18] Bohlouli-Zanjani P, Petrus J A, Martin J D 2007 Phys. Rev. Lett. 98 203005
[19] Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R, Lukin M D 2000 Phys. Rev. Lett. 85 2208
[20] Lukin M D, Flischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901
[21] Galindo A, Martin-Delgado M A 2002 Rev. Mod. Phys. 74 347
[22] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[23] Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007
[24] Dudin Y O, Kuzmich A 2012 Science 336 887
[25] Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141
[26] Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201
[27] Abel R P, Mohapatra A K, Bason M G, Pritchard J D, Weatherill K J, Raitzsch U, Adams C S 2009 Appl. Phys. Lett. 94 071107
[28] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106
-
[1] Boyd R W 2008 Nonlinear Optics (Beijing: Academic Press) p55
[2] Harris S E 1997 Phys. Today 50 36
[3] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
[4] Scully M O, Fleischhauer M 1992 Phys. Rev. Lett. 69 1360
[5] Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783
[6] Picque J L, Pinard J 1976 J. Phys. B 9 L77
[7] Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270
[8] Autler S H, Townes C H 1955 Phys. Rev. 100 703
[9] Scully M O, Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press) p205
[10] Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835
[11] Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) p11
[12] Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208
[13] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[14] Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020
[15] Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[16] Gordon J A, Holloway C L, Schwarzkopf A, Ander-son D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104
[17] Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002
[18] Bohlouli-Zanjani P, Petrus J A, Martin J D 2007 Phys. Rev. Lett. 98 203005
[19] Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R, Lukin M D 2000 Phys. Rev. Lett. 85 2208
[20] Lukin M D, Flischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901
[21] Galindo A, Martin-Delgado M A 2002 Rev. Mod. Phys. 74 347
[22] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[23] Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007
[24] Dudin Y O, Kuzmich A 2012 Science 336 887
[25] Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141
[26] Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201
[27] Abel R P, Mohapatra A K, Bason M G, Pritchard J D, Weatherill K J, Raitzsch U, Adams C S 2009 Appl. Phys. Lett. 94 071107
[28] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106
计量
- 文章访问数: 9293
- PDF下载量: 403
- 被引次数: 0