搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射

祁云平 周培阳 张雪伟 严春满 王向贤

引用本文:
Citation:

基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射

祁云平, 周培阳, 张雪伟, 严春满, 王向贤

Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure

Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian
PDF
导出引用
  • 金属单缝纳米结构因为结构简单、易于集成,常用在基于表面等离极化激元(surface plasmon polaritons,SPPs)的纳米结构中构建光源.但是,金属亚波长单缝结构一直存在透射率低的问题,如何提高其透射率一直是研究的重点.为了更好地提高金属亚波长单缝的透射率,本文对之前文献提出的分布式布拉格反射镜(distributed bragg reflector,DBR)和金属银薄膜纳米缝结构进行改进,在金属银薄膜两侧设计凹槽.当TM偏振光由DBR侧入射至DBR-银纳米缝结构时,DBR-银膜界面上和银膜入射侧凹槽一起激发的塔姆激元(Tamm plasmon polaritons,TPPs)和SPPs,以及纳米缝和银膜出射侧凹槽对的SPPs同时激发,利用凹槽激发的SPPs和银膜表面处的TPPs-SPPs混合模式的干涉相长耦合作用,通过塔姆激元的局域场增强效应和两侧凹槽与单纳米缝的干涉相长耦合作用进一步提高了表面等离极化激元模式的激发效率,再加上纳米缝中的类法布里-珀罗腔共振效应,使纳米缝的透射率得到增强.本文采用有限元方法研究了DBR-银纳米缝结构上单纳米缝加凹槽的透射特性.经过一系列参数优化,使DBR-银纳米缝凹槽结构的最大透射率增加到0.22,相对于TiO2-银纳米缝结构的透射率(0.01)提高了22倍,比文献[23]得到的最大透射率0.166有所提高.研究结果在纳米光源设计、光子集成电路和光学信号传输等相关领域具有一定的应用价值.
    In recent years, a metallic single slit nanostructure or slit array structure, due to simple structure and easy-to integration, has been used to construct a light source in the nanostructures based on the surface plasmon polaritons (SPPs). However, the problem of low transmission through an isolated subwavelength single slit nanostructure is still existent. The main reason is that the excitation efficiency of SPPs in the single slit nanostructure is not too high. Therefore, how to effectively enhance the optical transmission has become a research focus. In order to further improve the transmittance of the metallic single slit nanostructure, in this paper, we improve the single slit nanostructure imbedded in the metal silver thin film on a distributed Bragg reflector (DBR) proposed in previous literature. As a result, a novel method of designing a single slit on a DBR is proposed to effectively enhance the optical transmission in a single slit by improving the excitation efficiency of SPPs. Our proposed novel structure is made up of a subwavelength single nano-slit surrounded symmetrically by a pair of grooves on both sides of metal silver film on a distributed Bragg reflector. When the TM polarized light is illuminated from the DBR side of our proposed structure to the DBR-silver slit-grooves nanostructure, the Tamm plasmon polaritons (TPPs) at the interface between the silver film and the DBR and the SPPs in the slit on the entrance side of the silver film are excited at the DBR-silver film interface, and the SPPs in the slit and grooves pair on the exit side of the silver film are excited simultaneously. In our proposed structure, coupling between the TPPs and the SPPs leads to the hybrid state of Tamm and surface plasmon polaritons in the slit and grooves. Finally, taking advantage of constructive interference between SPPs excited by the grooves and exciting hybrid states of TPPs-SPPs in the slit, due to the local field enhancement effect of the TPPs mode and the coupling effect of constructive interference between the pair grooves and the nano-slit, the excitation efficiency of the SPPs can be increased significantly. Furthermore, the quasi Fabry-Pérot resonance effect in the nano-slit is taken into consideration, and the transmittance of our proposed structure is enhanced greatly. In the present paper, the finite element method is used to study the transmission properties of the single nano-slit embedded with paired grooves on the DBR-sliver nanostructure. After a series of parameters are optimized, the maximum transmittance through the single slit in DBR-silver slit-groove nanostructure can increase to 0.22, and this transmittance is expected to be about 22 times the transmittance (0.01) of the light through a single slit in a silver film on the TiO2 substrate (without DBR and grooves), which is higher than the maximum light transsmission 0.166 given in Ref.[23]. The research results of this study have a certain application value in the fields of nano-light source design, photonic integrated circuits and optical signal transmission and so on.
      通信作者: 祁云平, yunpqi@126.com
    • 基金项目: 国家自然科学基金(批准号:61367005,61741119)和甘肃省自然科学基金-创新基地和人才计划(批准号:17JR5RA078)资助的课题.
      Corresponding author: Qi Yun-Ping, yunpqi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61367005, 61741119) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA078).
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Parsons J, Hendry E, Burrows C P, Auguie B, Sambles J R, Barnes W L 2009 Phys. Rev. B 79 073412

    [3]

    Otto A 1968 Z. Phys. 216 398

    [4]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [6]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [7]

    Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [8]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [9]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [10]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [11]

    Bethe H A 1944 Phys. Rev. 66 163

    [12]

    Bouwkamp C J 1954 Rep. Proy. Phys. 17 35

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [15]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [16]

    Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [17]

    Astilent S, Lalanne Ph, M Palamaru 2000 Opt. Commun. 175 265

    [18]

    Takakura Y 2001 Phys. Rev. Lett. 86 245601

    [19]

    Qi Y P, Nan X H, Bai Y L, Wang X X 2017 Acta Phys. Sin. 66 117102 (in Chinese) [祁云平, 南向红, 摆玉龙, 王向贤 2017 物理学报 66 117102]

    [20]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [21]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [22]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [23]

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 物理学报 65 204207]

    [24]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [25]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [26]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [27]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese) [张振清, 陆海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 物理学报 64 114202]

    [28]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese) [陈颖, 范卉青, 卢波 2014 物理学报 63 244207]

    [29]

    Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Parsons J, Hendry E, Burrows C P, Auguie B, Sambles J R, Barnes W L 2009 Phys. Rev. B 79 073412

    [3]

    Otto A 1968 Z. Phys. 216 398

    [4]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [6]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [7]

    Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [8]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [9]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [10]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [11]

    Bethe H A 1944 Phys. Rev. 66 163

    [12]

    Bouwkamp C J 1954 Rep. Proy. Phys. 17 35

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [15]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [16]

    Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [17]

    Astilent S, Lalanne Ph, M Palamaru 2000 Opt. Commun. 175 265

    [18]

    Takakura Y 2001 Phys. Rev. Lett. 86 245601

    [19]

    Qi Y P, Nan X H, Bai Y L, Wang X X 2017 Acta Phys. Sin. 66 117102 (in Chinese) [祁云平, 南向红, 摆玉龙, 王向贤 2017 物理学报 66 117102]

    [20]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [21]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [22]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [23]

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 物理学报 65 204207]

    [24]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [25]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [26]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [27]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese) [张振清, 陆海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 物理学报 64 114202]

    [28]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese) [陈颖, 范卉青, 卢波 2014 物理学报 63 244207]

    [29]

    Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1] 关建飞, 俞潇, 丁冠天, 陈陶, 陆云清. 金属光栅覆盖分布式布拉格反射镜结构的透射增强效应. 物理学报, 2024, 73(11): 117301. doi: 10.7498/aps.73.20240357
    [2] 农洁, 张伊祎, 韦雪玲, 姜鑫鹏, 李宁, 王冬迎, 肖思洋, 陈泓廷, 张振荣, 杨俊波. 电介质/金属/电介质膜系实现可见光波段高透兼容激光隐身研究. 物理学报, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [4] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [5] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [6] 王帅, 邓子岚, 王发强, 王晓雷, 李向平. 光子角动量在环形金属纳米孔异常透射过程中的作用. 物理学报, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [7] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [8] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性. 物理学报, 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [9] 陆云清, 成心怡, 许敏, 许吉, 王瑾. 基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射. 物理学报, 2016, 65(20): 204207. doi: 10.7498/aps.65.204207
    [10] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [11] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [12] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象. 物理学报, 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [13] 秦艳, 曹威, 张中月. 内嵌矩形腔楔形金属狭缝的增强透射. 物理学报, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [14] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [15] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [16] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [17] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [18] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [19] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [20] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 物理学报, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
计量
  • 文章访问数:  7092
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-16
  • 修回日期:  2018-03-06
  • 刊出日期:  2019-05-20

/

返回文章
返回