搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多聚赖氨酸诱导的负电性磷脂巨囊泡形变

盛洁 王开宇 马贝贝 朱涛 蒋中英

引用本文:
Citation:

多聚赖氨酸诱导的负电性磷脂巨囊泡形变

盛洁, 王开宇, 马贝贝, 朱涛, 蒋中英

Poly-L-lysine induced shape change of negatively charged giant vesicles

Sheng Jie, Wang Kai-Yu, Ma Bei-Bei, Zhu Tao, Jiang Zhong-Ying
PDF
导出引用
  • 利用荧光显微技术表征了多聚赖氨酸诱导的负电性磷脂巨囊泡的动力学响应行为.研究发现,多聚赖氨酸可吸附至二油酰磷脂酰胆碱和二油酰磷脂酸混合磷脂巨囊泡的表面,诱导其发生粘连、出绳及破裂现象.分析认为,在低盐环境中,膜形变由多聚赖氨酸吸附于二油酰磷脂酸富集区引起的膜两叶应力不对称,以及静电相互作用等因素产生.研究结果对基于聚合物-巨囊泡体系的药物输运控释、细胞形变、微控反应和基因治疗等方面的研究提供有价值的支持.
    Decoration of biomembrane with polymer may improve its physical properties, biocompatibility, and stability. In this study, we employ the inverted fluorescence microscopy to characterize the polylysine (PLL) induced shape transformation of the negatively charged giant unilamellar vesicles (GUVs) in low ionic medium. It is found that PLL may be adsorbed to the 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1, 2-dioleoyl-sn-glycero-3-phosphatidic acid (DOPA) binary mixture vesicles, resulting in the attachment between the membranes, the formation of the ropes, and rupture of the GUVs. The response of GUVs generally is enhanced with the increase of the negatively charged DOPA in the membranes. The experimental observations are concluded as follows. Firstly, for the PLL induced attachment of GUVs, the attachment area grows gradually with time. Secondly, ropes can only be found in relatively large GUVs. However, the hollow structure is not discernable from the fluorescence imaging. Thirdly, after the rupture of GUVs, some phase-separated-like highly fluorescence lipid domains form in the adjacent intact vesicles. Through careful discussion and analysis, we show that on the one hand, the positively charged PLL adheres to the negatively charged membrane surface, bridging the neighboring GUVs and drawing the originally electrical repulsive vesicles together. The contact zone between GUVs expands with the increasing adsorption of PLL in this area. And the local high fluorescence areas in the GUVs originate from the PLL induced membrane attachment as well. Some membrane segments from ruptured vesicles are adsorbed to the particular areas of GUV, forming a few lipid patch structures above the latter membrane. On the other hand, PLL is adsorbed to the membrane area enriched in the negatively charged DOPA, reversing the surface charge of the upper leaflet and deteriorating the stability of the lipid bilayer. The original equilibrium of the system is broken by the change of the electrical interaction between the neighboring lipid domains as well as the interaction between the domain and water-dispersed PLL. The lipid packing density and inter-lipid force are affected by the PLL adsorption. Lipid membranes have to bud to release the stress built in the spontaneous curvature incompatibility in the two leaflets. The system may become stable again after buds grown into rods with a certain length. All in all, this study deepens the understanding of the interaction mechanism between lipid membrane and oppositely charged polymer. The conclusions obtained will provide valuable reference for the further studies on the polymer-GUV application areas including drug delivery, control release, cell deformation, micro-volume reaction, and gene therapy.
      通信作者: 朱涛, zhuttd@163.com;jiangzhying@163.com ; 蒋中英, zhuttd@163.com;jiangzhying@163.com
    • 基金项目: 国家自然科学基金(批准号:11464047,21764015,11474155,11774147)、中央高校基本科研业务费专项资金、自治区青年科技创新人才培养工程(批准号:QN2016YX0504)和伊犁师范学院科研项目(批准号:2013YSYB19)资助的课题.
      Corresponding author: Zhu Tao, zhuttd@163.com;jiangzhying@163.com ; Jiang Zhong-Ying, zhuttd@163.com;jiangzhying@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11464047, 21764015, 11474155, 11774147), the Fundamental Research Funds for the Central Universities, China, the Youth Science and Technology Innovation Talents Training Project of the Autonomous Region, China (Grant No. QN2016YX0504), and the Scientific Research Project of Yili Normal University, China (Grant No. 2013YSYB19).
    [1]

    Yang K, Ma Y Q 2010 Nat. Nanotech. 5 579

    [2]

    Ding H M, Tian W D, Ma Y Q 2012 ACS Nano 6 1230

    [3]

    Tahara K, Tadokoro S, Kawashima Y, Hirashima N 2012 Langmuir 28 7114

    [4]

    Jiang Z Y, Zhang G L, Ma J, Zhu T 2013 Acta Phys. Sin. 62 018701 (in Chinese) [蒋中英, 张国梁, 马晶, 朱涛 2013 物理学报 62 018701]

    [5]

    Ge L, Mhwald H, Li J 2003 Colloid. Surf. A 221 49

    [6]

    Brown K L, Conboy J C 2011 J. Am. Chem. Soc. 133 8794

    [7]

    Zhu T, Jiang Z Y, Ma Y Q, Hu Y 2016 ACS Appl. Mater. Interfaces 8 5857

    [8]

    Lee I C, Wu Y C 2014 ACS Appl. Mater. Interfaces 6 14439

    [9]

    Ding L, Chi E Y, Chemburu S 2009 Langmuir 25 13742

    [10]

    Burke S E, Barrett C J 2003 Biomacromolecules 4 1773

    [11]

    Tabaei S R, Jonsson P, Branden M, Hook F 2009 J. Struct. Biol. 168 200

    [12]

    Luan Y, Ramos L 2007 J. Am. Chem. Soc. 129 14619

    [13]

    Fu M, Li Q, Sun B 2017 ACS Nano 11 7349

    [14]

    Li Z L, Ding H M, Ma Y Q 2016 J. Phys.: Condens. Matter 28 083001

    [15]

    Hu J M, Tian W D, Ma Y Q 2015 Macromol. Theory Simul. 24 399

    [16]

    Menger F M, Seredyuk V A, Kitaeva M V, Yaroslavov A A, Melik-Nubarov N S 2003 J. Am. Chem. Soc. 125 2846

    [17]

    Kim Y W, Sung W Y 2001 Phys. Rev. E 63 041910

    [18]

    Lee H, Larson G R 2008 J. Phys. Chem. B 112 12279

    [19]

    Le B M, Yamada A, Reck L, Chen Y, Baigl D 2008 Langmuir 24 2643

    [20]

    Bi H, Yang B, Wang L 2013 J. Mater. Chem. A 1 7125

    [21]

    Pantazatos D P, MacDonald R C 1999 J. Membrane Biol. 170 27

    [22]

    Fan J, Li J F, Zhang H D, Yang Y L 2007 Acta Phys. Sin. 56 7230 (in Chinese) [范瑾, 李剑锋, 张红东, 杨玉良 2007 物理学报 56 7230]

    [23]

    Duan H, Li J F, Zhang H D 2018 Acta Phys. Sin. 67 038701 (in Chinese) [段华, 李剑锋, 张红东 2018 物理学报 67 038701]

    [24]

    Laroche G, Carrier D, Pzolet M 1988 Biochemistry 27 6220

    [25]

    Xie L Q, Tian W D, Ma Y Q 2013 Soft Matter 9 9319

    [26]

    Hayward S L, Francis D M, Sis M J, Kidambi S 2015 Sci. Rep. 5 14683

    [27]

    Heath G R, Li M, Polignano I L, Richens J L, Catucci G, Butt J N 2016 Biomacromolecules 17 324

    [28]

    Tian W D, Ma Y Q 2013 Chem. Soc. Rev. 42 705

    [29]

    Li J, Zhang H, Qiu F, Yang Y, Chen J Z 2015 Soft Matter 11 1788

    [30]

    Khalifat N, Puff N, Bonneau S, Fournier J B, Angelova M I 2008 Biophys. J. 95 4924

  • [1]

    Yang K, Ma Y Q 2010 Nat. Nanotech. 5 579

    [2]

    Ding H M, Tian W D, Ma Y Q 2012 ACS Nano 6 1230

    [3]

    Tahara K, Tadokoro S, Kawashima Y, Hirashima N 2012 Langmuir 28 7114

    [4]

    Jiang Z Y, Zhang G L, Ma J, Zhu T 2013 Acta Phys. Sin. 62 018701 (in Chinese) [蒋中英, 张国梁, 马晶, 朱涛 2013 物理学报 62 018701]

    [5]

    Ge L, Mhwald H, Li J 2003 Colloid. Surf. A 221 49

    [6]

    Brown K L, Conboy J C 2011 J. Am. Chem. Soc. 133 8794

    [7]

    Zhu T, Jiang Z Y, Ma Y Q, Hu Y 2016 ACS Appl. Mater. Interfaces 8 5857

    [8]

    Lee I C, Wu Y C 2014 ACS Appl. Mater. Interfaces 6 14439

    [9]

    Ding L, Chi E Y, Chemburu S 2009 Langmuir 25 13742

    [10]

    Burke S E, Barrett C J 2003 Biomacromolecules 4 1773

    [11]

    Tabaei S R, Jonsson P, Branden M, Hook F 2009 J. Struct. Biol. 168 200

    [12]

    Luan Y, Ramos L 2007 J. Am. Chem. Soc. 129 14619

    [13]

    Fu M, Li Q, Sun B 2017 ACS Nano 11 7349

    [14]

    Li Z L, Ding H M, Ma Y Q 2016 J. Phys.: Condens. Matter 28 083001

    [15]

    Hu J M, Tian W D, Ma Y Q 2015 Macromol. Theory Simul. 24 399

    [16]

    Menger F M, Seredyuk V A, Kitaeva M V, Yaroslavov A A, Melik-Nubarov N S 2003 J. Am. Chem. Soc. 125 2846

    [17]

    Kim Y W, Sung W Y 2001 Phys. Rev. E 63 041910

    [18]

    Lee H, Larson G R 2008 J. Phys. Chem. B 112 12279

    [19]

    Le B M, Yamada A, Reck L, Chen Y, Baigl D 2008 Langmuir 24 2643

    [20]

    Bi H, Yang B, Wang L 2013 J. Mater. Chem. A 1 7125

    [21]

    Pantazatos D P, MacDonald R C 1999 J. Membrane Biol. 170 27

    [22]

    Fan J, Li J F, Zhang H D, Yang Y L 2007 Acta Phys. Sin. 56 7230 (in Chinese) [范瑾, 李剑锋, 张红东, 杨玉良 2007 物理学报 56 7230]

    [23]

    Duan H, Li J F, Zhang H D 2018 Acta Phys. Sin. 67 038701 (in Chinese) [段华, 李剑锋, 张红东 2018 物理学报 67 038701]

    [24]

    Laroche G, Carrier D, Pzolet M 1988 Biochemistry 27 6220

    [25]

    Xie L Q, Tian W D, Ma Y Q 2013 Soft Matter 9 9319

    [26]

    Hayward S L, Francis D M, Sis M J, Kidambi S 2015 Sci. Rep. 5 14683

    [27]

    Heath G R, Li M, Polignano I L, Richens J L, Catucci G, Butt J N 2016 Biomacromolecules 17 324

    [28]

    Tian W D, Ma Y Q 2013 Chem. Soc. Rev. 42 705

    [29]

    Li J, Zhang H, Qiu F, Yang Y, Chen J Z 2015 Soft Matter 11 1788

    [30]

    Khalifat N, Puff N, Bonneau S, Fournier J B, Angelova M I 2008 Biophys. J. 95 4924

  • [1] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生. 物理学报, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [2] 王康, 徐成, 吴晋锋, 杨恺, 元冰. 蜂毒肽与单组分脂膜相互作用的单分子研究. 物理学报, 2021, 70(17): 178701. doi: 10.7498/aps.70.20210477
    [3] 卢建新, 张楠. 膜间相互作用、开弦对产生和增强效应及其可能的实验探测. 物理学报, 2020, 69(10): 101101. doi: 10.7498/aps.69.20200037
    [4] 徐成, 林召, 杨恺, 元冰. 蜂毒肽与二元脂膜相互作用过程的单分子运动行为. 物理学报, 2020, 69(10): 108701. doi: 10.7498/aps.69.20200166
    [5] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] 马丽, 贺小龙, 李明, 胡书新. tBid蛋白引发磷脂膜透化过程的研究. 物理学报, 2018, 67(14): 148703. doi: 10.7498/aps.67.20180099
    [7] 段华, 李剑锋, 张红东. 二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究. 物理学报, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [8] 秦世荣, 赵琪, 程振国, 苏丽霞, 单崇新. 纳米金刚石的分散、修饰及载药应用研究. 物理学报, 2018, 67(16): 166801. doi: 10.7498/aps.67.20180862
    [9] 梁月凤, 张劭光. 单开口膜泡形状转变的研究. 物理学报, 2017, 66(15): 158701. doi: 10.7498/aps.66.158701
    [10] 牛余全, 郑斌, 崔春红, 魏巍, 张彩霞, 孟庆田. 双柱胶体粒子与管状生物膜的相互作用. 物理学报, 2014, 63(3): 038701. doi: 10.7498/aps.63.038701
    [11] 张兆慧, 李海鹏, 毛仕春. 有机分子的结构与排列方式对原子电荷分布及静电作用的影响. 物理学报, 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [12] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究. 物理学报, 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [13] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [14] 李剑锋, 张红东, 邱 枫, 杨玉良. 模拟囊泡形变动力学的新方法离散空间变分法. 物理学报, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [15] 陈钢进, 夏钟福, 张冶文. 主客体掺杂型非线性光学聚合物驻极体DR1/PMMA膜中空间和偶极电荷的相互作用特性. 物理学报, 1999, 48(6): 1066-1071. doi: 10.7498/aps.48.1066
    [16] 颜家壬, 梅玉平. 光纤孤子间的相互作用. 物理学报, 1996, 45(7): 1122-1129. doi: 10.7498/aps.45.1122
    [17] 戴长建. 自电离序列间的相互作用. 物理学报, 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [18] 张静, 孙润广. 液晶态油酸脂质体与生物膜相互作用的理化特性. 物理学报, 1994, 43(9): 1495-1501. doi: 10.7498/aps.43.1495
    [19] 钱祖文. 球形粒子之间的声相互作用. 物理学报, 1981, 30(4): 433-441. doi: 10.7498/aps.30.433
    [20] 丁大钊, 王祝翔, 王淦昌. 奇异粒子的强相互作用. 物理学报, 1962, 18(7): 334-378. doi: 10.7498/aps.18.334
计量
  • 文章访问数:  6757
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-16
  • 修回日期:  2018-04-15
  • 刊出日期:  2018-08-05

/

返回文章
返回