搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于大景深单分子定位显微的多功能全息相位片的设计及数值模拟

李四维 吴晶晶 张赛文 李恒 陈丹妮 于斌 屈军乐

引用本文:
Citation:

用于大景深单分子定位显微的多功能全息相位片的设计及数值模拟

李四维, 吴晶晶, 张赛文, 李恒, 陈丹妮, 于斌, 屈军乐

Design and numerical simulation demonstration of multi-functional holographic phase plate for large depth of field single molecular localization microscopy

Li Si-Wei, Wu Jing-Jing, Zhang Sai-Wen, Li Heng, Chen Dan-Ni, Yu Bin, Qu Jun-Le
PDF
导出引用
  • 发展具有大轴向定位范围的单分子定位技术对于实现厚样品的超分辨成像具有重要的价值.基于波前编码技术,将变形多值纯相位光栅与双螺旋点扩散函数相位片相结合,提出一种可以通过空间光调制器实现的具有高衍射效率的新型全息相位片的设计方法.这种全息相位片可以将样品内多个层面的分子信息以双螺旋的形式成像在同一个探测面的不同位置,在无需扫描的情况下提高双螺旋点扩散函数工程的轴向定位范围和分辨率,解决活细胞内单分子定位和示踪技术中的大景深探测难题.数值模拟表明,设计的5×5全息相位片可以将样品内25个层面上的分子信息以双螺旋的形式成像在同一探测面上的不同位置,相邻两个层面的间隔为0.5 μm,实现了轴向12 μm 的探测范围,证明了设计的可行性.
    The development of nanoscale single-molecule localization and tracking technology for multiple bio-molecules in intact cells has important significance for studying the dynamic process in life process. Since most of cells are several microns in depth, but the focal depth of traditional optical microscopes are less than one micron, the limited depth of field is the main drawback of conventional single molecular localization microscopy that prevents observation and tracking of multiple molecules in intact cells. In this paper, based on the wavefront coding technique, a new type of holographic phase plate with high efficiency is proposed and designed to extend the depth of field of single molecular localization microscopy, which combines the distorted multi-value pure-phase grating (DMVPPG) with the double-helix point spread function (DH-PSF). The DMVPPG can be used to realize multiplane imaging of several tens of layers of a sample in a single detection plane. And the DH-PSF is an engineered point spread function which encodes the lateral and axial position with high precision of a molecule in the center of its two lobes and the angle between them respectively. Using the combined holographic phase plate, the molecules in dozens layers of a whole cell can be simultaneously imaged on the same detection plane with DH-PSF. Not only can the axial resolving power be improved, but the imaging depth can also be extended without scanning. Adding such a holographic phase plate to the imaging path, the limited imaging depth problem in single-molecule-localization microscopy can be solved without sacrificing the localization accuracy. The proposed new type of holographic phase plate can also be implemented with a spatial light modulator. In the following numerical simulation experiments, the designed holographic phase plate is composed of 600×600 pixels with a pixel size of 10 μm. The distance between two adjacent focal planes is designed to be 0.5 μm. Such a holographic phase plate is placed on the Fourier transform plane of the detection light path. When an emitter is located on the focal plane, it can be imaged as two lobes without rotation in a center area of the field of view. If an emitter is -6 μm away from the focal plane, the DH-PSF appears in the upper-left area of the field of view. Simulation results demonstrate that a total of 25 sample layers can be simultaneously imaged on the single detection plane and the 12 μm detection range can be achieved, thus proving the feasibility of this method.
      通信作者: 于斌, yubin@szu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB352005,2017YFA0700500)、国家自然科学基金(批准号:61775144,61525503,61620106016,81727804,61605127)、广东省自然科学基金(批准号:2014A030312008,2017A030310132)、深圳市基础研究项目(批准号:JCYJ20170818141701667,JCYJ20170818144012025,JCYJ20170412105003520,JCYJ20160308104404452,JCYJ20170818142804605)和国家留学基金(批准号:201708440486)资助的课题.
      Corresponding author: Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB352005, 2017YFA0700500), the National Natural Science Foundation of China (Grant Nos. 61775144, 61525503, 61620106016, 81727804, 61605127), the Guangdong Natural Science Foundation, China (Grant Nos. 2014A030312008, 2017A030310132), the Shenzhen Basic Research Project, China (Grant Nos. JCYJ20170818141701667, JCYJ20170818144012025, JCYJ20170412105003520, JCYJ20160308104404452, JCYJ20170818142804605), and the China Scholarship Council (Grant No. 201708440486).
    [1]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz L, Hess H F 2006 Science 313 1642

    [2]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [3]

    Hess S T, Girirajan T P, Mason M D 2006 Bio. Phys. J. 91 4258

    [4]

    Chamma I, Levet F, Sibarita J B, Sainlos M, Thoumine O 2016 Neurophotonics 3 041810

    [5]

    Endesfelder U, Heilemann M 2014 Nat. Methods 11 235

    [6]

    Flors C 2011 Biopolymers 95 290

    [7]

    Patterson G, Davidson M, Manley S, Lippincottschwartz J 2010 Annu. Rev. Phys. Chem. 61 345

    [8]

    Hossain S, Hashimoto M, Katakura M, Mamun A A, Shido O 2015 Bmc. Complem. Altern. M. 15 1

    [9]

    Huang B, Wang W, Bates M, Zhuang X W 2008 Science 319 810

    [10]

    Kao H P, Verkman A S 1994 Bio. Phys. J. 67 1291

    [11]

    Pavani S R, Piestun R 2008 Opt. Express 16 22048

    [12]

    Juette M F, Gould T J, Lessard M D, Mlodzianoski M J, Nagpure B S, Bennett B T, Hess S T, Bewersdorf J 2008 Nat. Methods 5 527

    [13]

    Hajj B, Wisniewski J, El B M, Chen J, Revyakin A, Wu C, Dahan M 2014 Proc. Natl. Acad. Sci. USA 111 17480

    [14]

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206 (in Chinese)[于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206]

    [15]

    Yousry T A, Pelletier D, Cadavid D, Gass A, Richert N D, Radue E W, Filippi M 2012 Ann. Neurol. 72 779

    [16]

    Yu J, Zhou C, Jia W, Ma J, Hu A, Wu J, Wang W 2013 Opt. Lett. 38 474

    [17]

    Zhu L, Sun M, Zhu M, Chen J, Gao X, Ma W, Zhang D 2014 Opt. Express 22 21354

    [18]

    Schechner Y Y, Piestun R, Shamir J 1996 Phys. Rev. E:Stat. Phys. Plasmas, Fluids 54 50

    [19]

    Ginni G, Sean Q, Callie F, Rafael P 2011 Biomed. Opt. Express 2 3010

    [20]

    Thompson M A, Casolari J M, Badieirostami M, Brown P O, Moerner W E 2010 Proc. Natl. Acad. Sci. USA 107 17864

    [21]

    Greengard A, Schechner Y Y, Piestun R 2006 Opt. Lett. 31 181

    [22]

    Pavani S R, Piestun R 2008 Opt. Express 16 3484

    [23]

    Grover G, Deluca K, Quirin S, Deluca J, Piestun 2012 Opt. Express 20 26681

    [24]

    Indebetouw G 1993 J. Mod. Opt. 40 73

    [25]

    Blanchard P M, Greenaway A H 1999 Appl. Opt. 38 6692

    [26]

    Zhou C, Liu L 1995 Appl. Opt. 34 5961

  • [1]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz L, Hess H F 2006 Science 313 1642

    [2]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [3]

    Hess S T, Girirajan T P, Mason M D 2006 Bio. Phys. J. 91 4258

    [4]

    Chamma I, Levet F, Sibarita J B, Sainlos M, Thoumine O 2016 Neurophotonics 3 041810

    [5]

    Endesfelder U, Heilemann M 2014 Nat. Methods 11 235

    [6]

    Flors C 2011 Biopolymers 95 290

    [7]

    Patterson G, Davidson M, Manley S, Lippincottschwartz J 2010 Annu. Rev. Phys. Chem. 61 345

    [8]

    Hossain S, Hashimoto M, Katakura M, Mamun A A, Shido O 2015 Bmc. Complem. Altern. M. 15 1

    [9]

    Huang B, Wang W, Bates M, Zhuang X W 2008 Science 319 810

    [10]

    Kao H P, Verkman A S 1994 Bio. Phys. J. 67 1291

    [11]

    Pavani S R, Piestun R 2008 Opt. Express 16 22048

    [12]

    Juette M F, Gould T J, Lessard M D, Mlodzianoski M J, Nagpure B S, Bennett B T, Hess S T, Bewersdorf J 2008 Nat. Methods 5 527

    [13]

    Hajj B, Wisniewski J, El B M, Chen J, Revyakin A, Wu C, Dahan M 2014 Proc. Natl. Acad. Sci. USA 111 17480

    [14]

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206 (in Chinese)[于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206]

    [15]

    Yousry T A, Pelletier D, Cadavid D, Gass A, Richert N D, Radue E W, Filippi M 2012 Ann. Neurol. 72 779

    [16]

    Yu J, Zhou C, Jia W, Ma J, Hu A, Wu J, Wang W 2013 Opt. Lett. 38 474

    [17]

    Zhu L, Sun M, Zhu M, Chen J, Gao X, Ma W, Zhang D 2014 Opt. Express 22 21354

    [18]

    Schechner Y Y, Piestun R, Shamir J 1996 Phys. Rev. E:Stat. Phys. Plasmas, Fluids 54 50

    [19]

    Ginni G, Sean Q, Callie F, Rafael P 2011 Biomed. Opt. Express 2 3010

    [20]

    Thompson M A, Casolari J M, Badieirostami M, Brown P O, Moerner W E 2010 Proc. Natl. Acad. Sci. USA 107 17864

    [21]

    Greengard A, Schechner Y Y, Piestun R 2006 Opt. Lett. 31 181

    [22]

    Pavani S R, Piestun R 2008 Opt. Express 16 3484

    [23]

    Grover G, Deluca K, Quirin S, Deluca J, Piestun 2012 Opt. Express 20 26681

    [24]

    Indebetouw G 1993 J. Mod. Opt. 40 73

    [25]

    Blanchard P M, Greenaway A H 1999 Appl. Opt. 38 6692

    [26]

    Zhou C, Liu L 1995 Appl. Opt. 34 5961

  • [1] 王剑, 马超, 王东辉, 孟令知, 王洪业, 苑立波. 离轴螺旋长周期光纤光栅特性研究. 物理学报, 2023, 72(13): 130701. doi: 10.7498/aps.72.20230415
    [2] 李四维, 林丹樱, 邹小慧, 张炜, 陈丹妮, 于斌, 屈军乐. 基于双螺旋点扩散函数工程的多焦点图像扫描显微. 物理学报, 2021, 70(3): 038701. doi: 10.7498/aps.70.20200640
    [3] 赵忠超, 杨旭锋, 许天旭, 何九如, 弓巧侠, 杜艳丽, 董林, 袁斌, 马凤英. 基于螺旋相位调制的非相干全息点扩散函数研究. 物理学报, 2018, 67(1): 014203. doi: 10.7498/aps.67.20171442
    [4] 程生毅, 陈善球, 董理治, 王帅, 杨平, 敖明武, 许冰. 变形镜高斯函数指数对迭代法自适应光学系统的影响. 物理学报, 2015, 64(9): 094207. doi: 10.7498/aps.64.094207
    [5] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨. 物理学报, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [6] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [7] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [8] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究. 物理学报, 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [9] 陈鹤, 于斌, 陈丹妮, 李恒, 牛憨笨. 超衍射成像中双螺旋点扩展函数的三维定位精度. 物理学报, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [10] 于斌, 李恒, 陈丹妮, 牛憨笨. 用于大景深三维纳米分辨多分子追踪的衍射光学元件的设计制备和实验研究. 物理学报, 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [11] 赵廷玉, 刘钦晓, 余飞鸿. 波前编码系统的点扩散函数稳相法分析. 物理学报, 2012, 61(7): 074207. doi: 10.7498/aps.61.074207
    [12] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [13] 何安民, 邵建立, 王裴, 秦承森. 单晶Cu(001)薄膜塑性变形的分子动力学模拟. 物理学报, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [14] 刘永利, 赵星, 张宗宁, 张林, 王绍青, 叶恒强. TiAl/Ti3Al体系剪切变形的分子动力学研究. 物理学报, 2009, 58(13): 246-S253. doi: 10.7498/aps.58.246
    [15] 代少玉, 吴振森, 徐仰彬. 用基于Daubechies尺度函数的时域多分辨分析计算电磁散射. 物理学报, 2007, 56(2): 786-790. doi: 10.7498/aps.56.786
    [16] 王 凌, 徐之海, 冯华君. 多分散高浓度介质偏振光后向扩散散射的Monte Carlo仿真. 物理学报, 2005, 54(6): 2694-2698. doi: 10.7498/aps.54.2694
    [17] 张海燕. 多分量胶体悬浮系统转动扩散张量的反射理论. 物理学报, 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [18] 杨光参. q变形振子模型描述的双原子分子的能级数与离解能. 物理学报, 1993, 42(1): 92-94. doi: 10.7498/aps.42.92
    [19] 阎宏, 常哲, 郭汉英. q变形转动振子模型(Ⅰ)——q振子与双原子分子振动谱. 物理学报, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
    [20] 王允然. 用变形的传播函数计算核子电荷半径. 物理学报, 1961, 17(1): 57-60. doi: 10.7498/aps.17.57
计量
  • 文章访问数:  4453
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-30
  • 修回日期:  2018-05-16
  • 刊出日期:  2018-09-05

/

返回文章
返回