搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉曼激光雷达的大气三相态水同步精细探测分光系统的设计与仿真分析

王玉峰 张晶 汤柳 王晴 高天乐 宋跃辉 狄慧鸽 李博 华灯鑫

引用本文:
Citation:

基于拉曼激光雷达的大气三相态水同步精细探测分光系统的设计与仿真分析

王玉峰, 张晶, 汤柳, 王晴, 高天乐, 宋跃辉, 狄慧鸽, 李博, 华灯鑫

Design and simulation analysis of spectroscopic system for synchronous atmospheric three-phase water detection based on Raman lidar

Wang Yu-Feng, Zhang Jing, Tang Liu, Wang Qing, Gao Tian-Le, Song Yue-Hui, Di Hui-Ge, Li Bo, Hua Deng-Xin
PDF
导出引用
  • 水是惟一具有三相态的大气参数,三相态水的分布研究对认识云微物理、云降水物理以及人工影响天气过程具有重要的科学意义.在大气三相态水的拉曼激光雷达探测技术中,需首先解决三相态水的高光谱分光技术,以保证对回波信号的精细提取和高信噪比探测.考虑到水汽、液态水和固态水的拉曼光谱特性,本文首先通过理论仿真详细探讨了各拉曼通道中滤光片的选型参数对三相态水光谱重叠特性和探测信噪比的影响;并针对两者无法同时取得最优解的情况,提出了利用多目标规划问题的评价函数方法,分析获得了各通道最优的滤光片参数.结果表明,当固态水、液态水和水汽通道窄带滤光片中心波长和带宽分别为397.9 nm (3.1 nm),403 nm (5 nm)和407.6 nm (0.6 nm)时,可获得各通道间最低的光谱重叠度值和最佳探测信噪比,从而实现了三相态水同步探测拉曼分光系统的优化设计.进一步的仿真结果表明,当激光雷达探测效率因子为1800 J·mm·min时,在有云条件下系统可获得白天3.6 km以上和晴天条件下4 km以上的三相态水有效探测,保证了利用拉曼激光雷达实现对三相态水的同步高信噪比探测,为后续大气三相态水的拉曼激光雷达同步探测和反演提供了技术和理论支持.
    Water is the only atmospheric parameter with three-phase states. The study on distribution and variation in three-phase water is of great scientific significance for understanding cloud microphysics, cloud precipitation physics, and water circulation, especially in the fields of artificial weather process. In the Raman lidar detection technology of three-phase water, it is necessary to solve the problem of high-spectral spectroscopic technique to ensure fine extraction of the echo signal and the detection with high signal-to-noise ratio (SNR). Considering the Raman spectrum characteristics of three-phase water, the influences of filter parameters in the Raman channels on the overlapping characteristics are theoretical simulated and discussed in detail, and the SNR is investigated as well. Regarding the fact that optimal solution can be obtained for neither overlapping nor SNR at the same time, an evaluation function method based on the multi-objective programming problem is proposed to analyze the optimal filter parameters. The results show that the minimum overlapping value and the higher system SNR can be obtained when the central wavelength and bandwidth of the filters are determined to be 397.9 nm and 3.1 nm, 403 nm and 5 nm, 407.6 nm and 0.6 nm in solid water, liquid water and water vapor channel, respectively, and thus the optimal design can be realized for synchronous detection Raman spectroscopic system for three-phase water. Further simulation results show that effective detection can reach above 3.6 km in the daytime and over 4 km on sunny days under a system factor of 1800 J·mm·min for three-phase water Raman measurement in the daytime. Furthermore, the obtained overlapping values are applied to accurate retrieval theory for three-phase water profiles. The simulated profiles of atmospheric water vapor, liquid water and ice water indicate that the water vapor, liquid water and solid water content can be increased synchronously in the cloud layer, and their content, distribution characteristics and the corresponding error are also discussed. The above results validate the feasibility of highspectral spectroscopic technique for detecting the synchronous atmospheric three-phase water, and will provide technical and theoretical support for synchronous retrieval of three-phase water by Raman lidar.
      通信作者: 王玉峰, wangyufeng@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1733202,41575027,41627807,41027004)资助的课题.
      Corresponding author: Wang Yu-Feng, wangyufeng@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1733202, 41575027, 41627807, 41027004).
    [1]

    Jacobson M Z, Pruppacher H R, Klett J D 1998 Clim. Change 38 497

    [2]

    Plakhotnik T, Reichardt J 2017 J. Quant. Spectrosc. Radiat. Transfer. 194 58

    [3]

    Zhang Z H, Zhou Y Q 2010 Meteorol. Mon. 36 83 (in Chinese) [张志红, 周毓荃 2010 气象 36 83]

    [4]

    Su T, Feng G L 2014 Acta Phys. Sin. 63 249201 (in Chinese) [苏涛, 封国林 2014 物理学报 63 249201]

    [5]

    Ge Y, Shu R, Hu Y H, Liu H 2014 Acta Phys. Sin. 63 204301 (in Chinese) [葛烨, 舒嵘, 胡以华, 刘豪 2014 物理学报 63 204301]

    [6]

    Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301 (in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 物理学报 65 143301]

    [7]

    Sun G D, Qin L A, Zhang S L, He F, Tan F F, Jing X, Hou Z H 2018 Acta Phys. Sin. 67 054205 (in Chinese) [孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红 2018 物理学报 67 054205]

    [8]

    Foth A, Pospichal B 2017 Atmos. Meas. Tech. 9 1

    [9]

    Wang Y F, Gao F, Zhu C X, He T Y, Hua D X 2015 Acta Opt. Sin. 35 0328004 (in Chinese) [王玉峰, 高飞, 朱承炫, 何廷尧, 华灯鑫 2015 光学学报 35 0328004]

    [10]

    Wang Y F, Fu Q, Zhao M N, Gao F, Di H G, Song Y H, Hua D X 2018 J. Quant. Spectrosc. Radiat. Transfer. 205 114

    [11]

    Stachlewska I S, Costa-Surós M 2017 Atmos. Res. 194 258

    [12]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 物理学报 62 120701]

    [13]

    Yabuki M, Matsuda M, Nakamura T, Hayashi T, Tsuda T 2016 J. Atmos. Sol-Terr Phys. 150 21

    [14]

    Veselovskii I A, Cha H K, Kim D H, Choi S C, Lee J M 2001 Appl. Phys. B 73 739

    [15]

    Bhl J, Seifert P, Myagkov A, Ansmann A 2016 J. Atmos. Ocean. Tech. 16 1

    [16]

    Sakai T, Whiteman D N, Russo F, Turner David D, Veselovskii I A, Melfi S H, Nagai T, Mano Y 2013 J. Atmos. Ocean. Tech. 30 1337

    [17]

    Veselovskii I A, Cha H K, Kim D H, Choi S C, Lee J M 2000 Appl. Phys. B 71 113

    [18]

    Wang Z, Whiteman D N, Demoz B B, Veselovskii I A 2004 Geophys. Res. Lett. 31 121

    [19]

    Liu F C, Yi F, Jia J Y, Zhang Y P, Zhang S D, Yu C M, Tan Y 2012 Chin. Technol. Sci. 55 1224

    [20]

    Reichardt J 2014 J. Atmos. Ocean. Tech. 31 1946

    [21]

    Stillwell R A, Iii R R N, Thayer J P, Shupe M D, Turner D D 2018 Atmos. Meas. Tech. 11 1

    [22]

    Donovan D P, Klein Baltink H, Henzing J S, de Roode S R, Siebesma A P 2015 Atmos. Meas. Tech. Discuss. 8 237

    [23]

    Whiteman D N 2003 Appl. Opt. 42 2593

    [24]

    Wang K R 2012 Optimization Method (Beijing: Science Press) p156 (in Chinese) [王开荣 2012 最优化方法 (北京: 科学出版社) 第156页]

  • [1]

    Jacobson M Z, Pruppacher H R, Klett J D 1998 Clim. Change 38 497

    [2]

    Plakhotnik T, Reichardt J 2017 J. Quant. Spectrosc. Radiat. Transfer. 194 58

    [3]

    Zhang Z H, Zhou Y Q 2010 Meteorol. Mon. 36 83 (in Chinese) [张志红, 周毓荃 2010 气象 36 83]

    [4]

    Su T, Feng G L 2014 Acta Phys. Sin. 63 249201 (in Chinese) [苏涛, 封国林 2014 物理学报 63 249201]

    [5]

    Ge Y, Shu R, Hu Y H, Liu H 2014 Acta Phys. Sin. 63 204301 (in Chinese) [葛烨, 舒嵘, 胡以华, 刘豪 2014 物理学报 63 204301]

    [6]

    Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301 (in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 物理学报 65 143301]

    [7]

    Sun G D, Qin L A, Zhang S L, He F, Tan F F, Jing X, Hou Z H 2018 Acta Phys. Sin. 67 054205 (in Chinese) [孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红 2018 物理学报 67 054205]

    [8]

    Foth A, Pospichal B 2017 Atmos. Meas. Tech. 9 1

    [9]

    Wang Y F, Gao F, Zhu C X, He T Y, Hua D X 2015 Acta Opt. Sin. 35 0328004 (in Chinese) [王玉峰, 高飞, 朱承炫, 何廷尧, 华灯鑫 2015 光学学报 35 0328004]

    [10]

    Wang Y F, Fu Q, Zhao M N, Gao F, Di H G, Song Y H, Hua D X 2018 J. Quant. Spectrosc. Radiat. Transfer. 205 114

    [11]

    Stachlewska I S, Costa-Surós M 2017 Atmos. Res. 194 258

    [12]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 物理学报 62 120701]

    [13]

    Yabuki M, Matsuda M, Nakamura T, Hayashi T, Tsuda T 2016 J. Atmos. Sol-Terr Phys. 150 21

    [14]

    Veselovskii I A, Cha H K, Kim D H, Choi S C, Lee J M 2001 Appl. Phys. B 73 739

    [15]

    Bhl J, Seifert P, Myagkov A, Ansmann A 2016 J. Atmos. Ocean. Tech. 16 1

    [16]

    Sakai T, Whiteman D N, Russo F, Turner David D, Veselovskii I A, Melfi S H, Nagai T, Mano Y 2013 J. Atmos. Ocean. Tech. 30 1337

    [17]

    Veselovskii I A, Cha H K, Kim D H, Choi S C, Lee J M 2000 Appl. Phys. B 71 113

    [18]

    Wang Z, Whiteman D N, Demoz B B, Veselovskii I A 2004 Geophys. Res. Lett. 31 121

    [19]

    Liu F C, Yi F, Jia J Y, Zhang Y P, Zhang S D, Yu C M, Tan Y 2012 Chin. Technol. Sci. 55 1224

    [20]

    Reichardt J 2014 J. Atmos. Ocean. Tech. 31 1946

    [21]

    Stillwell R A, Iii R R N, Thayer J P, Shupe M D, Turner D D 2018 Atmos. Meas. Tech. 11 1

    [22]

    Donovan D P, Klein Baltink H, Henzing J S, de Roode S R, Siebesma A P 2015 Atmos. Meas. Tech. Discuss. 8 237

    [23]

    Whiteman D N 2003 Appl. Opt. 42 2593

    [24]

    Wang K R 2012 Optimization Method (Beijing: Science Press) p156 (in Chinese) [王开荣 2012 最优化方法 (北京: 科学出版社) 第156页]

  • [1] 沈勇, 沈煜航, 董家齐, 李佳, 石中兵, 宗文刚, 潘莉, 李继全. 特定湍动激励-响应类型二次非线性系统双谱分析仿真建模. 物理学报, 2024, 73(18): 184701. doi: 10.7498/aps.73.20232013
    [2] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法. 物理学报, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] 孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永. 自拉曼混频黄绿波段三波长可切换激光. 物理学报, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [4] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真. 物理学报, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [5] 李启蒙, 李仕春, 秦宇丽, 胡向龙, 赵静, 宋跃辉, 华灯鑫. 绝对测温转动拉曼激光雷达分光系统设计 及性能. 物理学报, 2018, 67(1): 014207. doi: 10.7498/aps.67.20171834
    [6] 景敏, 华灯鑫, 乐静. 荧光激光雷达技术探测水面油污染系统仿真研究. 物理学报, 2016, 65(7): 070704. doi: 10.7498/aps.65.070704
    [7] 李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫. 绝对探测大气温度的纯转动拉曼激光雷达系统. 物理学报, 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [8] 巩鑫, 华灯鑫, 李仕春, 王骏, 石晓菁. 基于取样光纤布拉格光栅的全光纤拉曼测温分光系统设计及优化. 物理学报, 2016, 65(7): 073601. doi: 10.7498/aps.65.073601
    [9] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [10] 陈浩, 华灯鑫, 张毅坤, 朱承炫. 米散射激光雷达剖面数据三次样条垂直水平插值法. 物理学报, 2014, 63(15): 154204. doi: 10.7498/aps.63.154204
    [11] 葛烨, 舒嵘, 胡以华, 刘豪. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真. 物理学报, 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [12] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [13] 赵俊英, 金宁德, 高忠科. 油气水三相流段塞流不稳定周期轨道探寻. 物理学报, 2013, 62(8): 084701. doi: 10.7498/aps.62.084701
    [14] 赵小峰, 黄思训. 大气波导条件下雷达海杂波功率仿真. 物理学报, 2013, 62(9): 099204. doi: 10.7498/aps.62.099204
    [15] 杨晓芳, 茅威, 付强. 基于动态地场和元胞自动机的自行车流建模. 物理学报, 2013, 62(24): 240511. doi: 10.7498/aps.62.240511
    [16] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [17] 陈亮, 郭仁拥, 塔娜. 双出口房间内疏散行人流的仿真和实验研究. 物理学报, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [18] 王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎. 水汽探测拉曼激光雷达的新型光谱分光系统设计与分析. 物理学报, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [19] 汪少林, 苏 嘉, 赵培涛, 曹开法, 胡顺星, 魏合理, 谭 锟, 胡欢陵. 基于三级Fabry-Perot标准具的纯转动拉曼测温激光雷达. 物理学报, 2008, 57(6): 3941-3947. doi: 10.7498/aps.57.3941
    [20] 张小平, 朱建林, 文泽军, 岳 舟, 柳莎莎. 一种基于双闭环控制策略的新型矩阵变换器研究. 物理学报, 2007, 56(5): 2523-2528. doi: 10.7498/aps.56.2523
计量
  • 文章访问数:  6306
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 修回日期:  2018-09-13
  • 刊出日期:  2019-11-20

/

返回文章
返回