搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于方波脉冲外场的超冷原子-分子绝热转化

秦燕 栗生长

引用本文:
Citation:

基于方波脉冲外场的超冷原子-分子绝热转化

秦燕, 栗生长

Adiabatic conversion of ultracold atoms into molecules via square-shaped pulse field

Qin Yan, Li Sheng-Chang
PDF
导出引用
  • 基于受激拉曼绝热通道技术,研究了方波脉冲外场下的超冷原子-双原子分子转化.运用绝热保真度的方法,详细分析了该原子-分子转化系统相干布居俘获态的动力学演化过程.研究发现,相干布居俘获态的最终绝热保真度随脉冲激光强度的变化呈现出大幅度的周期振荡.这表明本文所设计的方波脉冲方案与高斯脉冲方案相比具有明显的优势,可以在较小的脉冲激光强度下达到较高的绝热保真度并实现较高效率的超冷原子-分子转化.
    On the basis of the stimulated Raman adiabatic passage technology, we study the conversion of ultracold atoms into diatomic molecules by using a square-shaped pulse field. By the method of adiabatic fidelity, we analyze the dynamical evolution process of the coherent population trapping state for the atom-molecule conversion system. We introduce two adiabatic fidelities to describe the efficiency of ultracold atom-molecule conversion, i.e.:1) the final adiabatic fidelity, which gives the value of the adiabatic fidelity at the end of the evolution:the closer to 1 it is, the higher the conversion efficiency is; 2) the final maximum adiabatic fidelity, which denotes the maximum value that can be achieved at the end of evolution, indicating the highest conversion efficiency. With these two quantities, we discuss how to achieve higher adiabatic fidelity for the coherent population trapping state through optimizing the pulse-delay time and the pulse-laser intensity of the stimulated Raman adiabatic passage. In addition, we also discuss the effects of the width of pulses on the ultracold atom-molecule conversion efficiency and the feasibility of continuous light. It is shown that the final adiabatic fidelity of the coherent population trapping state demonstrates a large periodic oscillation with the pulse-laser intensity. By calculating and analyzing the final adiabatic fidelity and the final maximum adiabatic fidelity, we obtain the conditions for higher efficiency conversion, which gives the best choice of the pulse-laser intensity, the pulse-delay time, and the width of pulses. The results show that the scheme of square-shaped pulses we discussed has obvious advantages compared with that of Gaussian-shaped pulses, which can achieve high adiabatic fidelity and realize higher ultracold atom-molecule conversion efficiency via employing the pulse-laser field with low intensity. Further detailed comparison between the square-shaped pulses and the Gaussian-shaped pulses is also given. Particularly, we find that the final adiabatic fidelity shows a periodic oscillation with the pulse width, which means that the high efficiency atom-molecule conversion can be achieved by using a pulse field with small width. Moreover, we find that the high efficiency conversion can also be achieved by using special continuous light under certain conditions.
      通信作者: 栗生长, scli@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11305120,11605126)和陕西省自然科学基础研究计划(批准号:2015JQ1017)资助的课题.
      Corresponding author: Li Sheng-Chang, scli@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305120, 11605126) and the Natural Science Fundamental Research Program of Shaanxi Province of China (Grant No. 2015JQ1017).
    [1]

    Qian J, Zhang W P, Ling H Y 2010 Phys. Rev. A 81 013632

    [2]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [3]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [4]

    Jin D S, Ye J 2012 Chem. Rev. 112 4801

    [5]

    Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493

    [6]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003

    [7]

    Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003

    [8]

    Schuster D I, Bishop L S, Chuang I L, DeMille D, Schoelkopf R J 2011 Phys. Rev. A 83 012311

    [9]

    Walter K, Stickler B A, Hornberger K 2016 Phys. Rev. A 93 063612

    [10]

    Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2001 Phys. Rev. Lett. 88 013903

    [11]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [12]

    Liu J P, Hou S Y, Wei B, Yin J P 2015 Acta Phys. Sin. 64 173701 (in Chinese)[刘建平, 侯顺永, 魏斌, 印建平 2015 物理学报 64 173701]

    [13]

    Vanhaecke N, Meier U, Andrist M, Meier B H, Merkt F 2007 Phys. Rev. A 75 031402

    [14]

    Rangwala S A, Junglen T, Rieger T, Pinkse P W H, Rempe G 2003 Phys. Rev. A 67 043406

    [15]

    Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419

    [16]

    Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570

    [17]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151

    [18]

    Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Rui J, Zhao B, Pan J W, Tiemann E 2017 Phys. Rev. A 96 062705

    [19]

    Kallush S, Carini J L, Gould P L, Kosloff R 2017 Phys. Rev. A 96 053613

    [20]

    Zhao Y T, Yuan J P, Ji Z H, Li Z H, Meng T F, Liu T, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 193701 (in Chinese)[赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂 2014 物理学报 63 193701]

    [21]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese)[孟少英, 吴炜 2009 物理学报 58 5311]

    [22]

    Rvachov T M, Son H, Sommer A T, Ebadi S, Park J J, Zwierlein M W, Ketterle W, Jamison A O 2017 Phys. Rev. Lett. 119 143001

    [23]

    Li G Q, Peng P 2011 Acta Phys. Sin. 60 110304 (in Chinese)[李冠强, 彭娉 2011 物理学报 60 110304]

    [24]

    Zhang L, Yan L Y, Bao H H, Chai X Q, Ma D D, Wu Q N, Xia L C, Yao D, Qian J 2017 Acta Phys. Sin. 66 213301 (in Chinese)[张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静 2017 物理学报 66 213301]

    [25]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [26]

    Efimov V 1970 Phys. Lett. B 33 563

    [27]

    Dou F Q, Fu L B, Liu J 2013 Phys. Rev. A 87 043631

    [28]

    Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410

    [29]

    Pu H, Maenner P, Zhang W P, Ling H Y 2007 Phys. Rev. Lett. 98 050406

    [30]

    Itin A P, Watanabe S 2007 Phys. Rev. Lett. 99 223903

    [31]

    Ling H Y, Pu H, Seaman B 2004 Phys. Rev. Lett. 93 250403

    [32]

    Ling H Y, Maenner P, Zhang W P, Pu H 2007 Phys. Rev. A 75 033615

  • [1]

    Qian J, Zhang W P, Ling H Y 2010 Phys. Rev. A 81 013632

    [2]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [3]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [4]

    Jin D S, Ye J 2012 Chem. Rev. 112 4801

    [5]

    Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493

    [6]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003

    [7]

    Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003

    [8]

    Schuster D I, Bishop L S, Chuang I L, DeMille D, Schoelkopf R J 2011 Phys. Rev. A 83 012311

    [9]

    Walter K, Stickler B A, Hornberger K 2016 Phys. Rev. A 93 063612

    [10]

    Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2001 Phys. Rev. Lett. 88 013903

    [11]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [12]

    Liu J P, Hou S Y, Wei B, Yin J P 2015 Acta Phys. Sin. 64 173701 (in Chinese)[刘建平, 侯顺永, 魏斌, 印建平 2015 物理学报 64 173701]

    [13]

    Vanhaecke N, Meier U, Andrist M, Meier B H, Merkt F 2007 Phys. Rev. A 75 031402

    [14]

    Rangwala S A, Junglen T, Rieger T, Pinkse P W H, Rempe G 2003 Phys. Rev. A 67 043406

    [15]

    Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419

    [16]

    Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570

    [17]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151

    [18]

    Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Rui J, Zhao B, Pan J W, Tiemann E 2017 Phys. Rev. A 96 062705

    [19]

    Kallush S, Carini J L, Gould P L, Kosloff R 2017 Phys. Rev. A 96 053613

    [20]

    Zhao Y T, Yuan J P, Ji Z H, Li Z H, Meng T F, Liu T, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 193701 (in Chinese)[赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂 2014 物理学报 63 193701]

    [21]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese)[孟少英, 吴炜 2009 物理学报 58 5311]

    [22]

    Rvachov T M, Son H, Sommer A T, Ebadi S, Park J J, Zwierlein M W, Ketterle W, Jamison A O 2017 Phys. Rev. Lett. 119 143001

    [23]

    Li G Q, Peng P 2011 Acta Phys. Sin. 60 110304 (in Chinese)[李冠强, 彭娉 2011 物理学报 60 110304]

    [24]

    Zhang L, Yan L Y, Bao H H, Chai X Q, Ma D D, Wu Q N, Xia L C, Yao D, Qian J 2017 Acta Phys. Sin. 66 213301 (in Chinese)[张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静 2017 物理学报 66 213301]

    [25]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [26]

    Efimov V 1970 Phys. Lett. B 33 563

    [27]

    Dou F Q, Fu L B, Liu J 2013 Phys. Rev. A 87 043631

    [28]

    Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410

    [29]

    Pu H, Maenner P, Zhang W P, Ling H Y 2007 Phys. Rev. Lett. 98 050406

    [30]

    Itin A P, Watanabe S 2007 Phys. Rev. Lett. 99 223903

    [31]

    Ling H Y, Pu H, Seaman B 2004 Phys. Rev. Lett. 93 250403

    [32]

    Ling H Y, Maenner P, Zhang W P, Pu H 2007 Phys. Rev. A 75 033615

  • [1] 韩艳晨, 李昱东, 李维. 相干布居囚禁振荡与拉曼失谐的关系. 物理学报, 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408
    [2] 温亚飞, 田剑锋, 王志强, 庄园园. 冷原子系综中光纤腔增强且高保真度的光学存储. 物理学报, 2023, 72(6): 060301. doi: 10.7498/aps.72.20222178
    [3] 王子钰, 魏景乐, 徐文琪, 姜甲明, 黄逸凡, 刘伟民. 利用飞秒受激拉曼光谱技术研究Pyranine分子激发态质子传递过程. 物理学报, 2020, 69(19): 198201. doi: 10.7498/aps.69.20200230
    [4] 张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静. 实现粒子布居高效转移的两种激光脉冲时序方案的理论研究. 物理学报, 2017, 66(21): 213301. doi: 10.7498/aps.66.213301
    [5] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用. 物理学报, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [6] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [7] 赵岫鸟, 孙建安, 豆福全. 外场形式对超冷原子-多聚物分子转化效率的影响. 物理学报, 2014, 63(22): 220302. doi: 10.7498/aps.63.220302
    [8] 刘智, 刁文婷, 王杰英, 梁强兵, 杨保东, 何军, 张天才, 王军民. 铯原子气室中相干布居俘获的参数依赖关系研究. 物理学报, 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [9] 李冠强, 彭娉, 曹振洲, 薛具奎. 超冷原子向异核四聚物分子A3B的绝热转化. 物理学报, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [10] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度. 物理学报, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [11] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [12] 李冠强, 彭娉. 外场参数对超冷原子向异核三原子分子转化的影响. 物理学报, 2011, 60(11): 110304. doi: 10.7498/aps.60.110304
    [13] 孟少英, 吴炜. 原子-二聚物分子转化系统在受激拉曼绝热过程中的绝热保真度. 物理学报, 2009, 58(8): 5311-5317. doi: 10.7498/aps.58.5311
    [14] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [15] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [16] 王忠纯. 外场驱动对Tavis-Cummings模型中量子态保真度的影响. 物理学报, 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
    [17] 周艳微, 叶存云, 林 强, 王育竹. 基于绝热快速通道控制原子布居数及其相干性的研究. 物理学报, 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [18] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获. 物理学报, 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
    [19] 王利强, 李永放, 曹冬梅, 毕冬艳, 张崇俊, 成延春. V型原子系统中相干布居俘获的相干相位调制研究 . 物理学报, 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
    [20] 刘堂昆, 王继锁, 柳晓军, 詹明生. 纠缠态原子偶极间相互作用对量子态保真度的影响. 物理学报, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
计量
  • 文章访问数:  6447
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 修回日期:  2018-07-27
  • 刊出日期:  2019-10-20

/

返回文章
返回