搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含磁电弹夹层的压电/压磁声子晶体带隙特性研究

孙炜海 张超群 鞠桂玲 潘晶雯

引用本文:
Citation:

含磁电弹夹层的压电/压磁声子晶体带隙特性研究

孙炜海, 张超群, 鞠桂玲, 潘晶雯

Band gaps of piezoelectric/piezomagnetic phononic crystal with magneto-electro-elastic interlayer

Sun Wei-Hai, Zhang Chao-Qun, Ju Gui-Ling, Pan Jing-Wen
PDF
导出引用
  • 将具有力电磁耦合性能的夹层引入到压电/压磁声子晶体中,在保持单胞长度为固定值的情况下,分别改变磁电弹夹层的厚度、磁电弹夹层中压电材料的体积分数和磁电弹夹层中压电材料的种类;并利用传递矩阵法和Bloch定理,得到波数k与频率的色散关系;通过色散关系图分析不同的磁电弹夹层对压电/压磁声子晶体带隙特性的影响.研究发现:当磁电弹夹层厚度增加时,带隙的中心频率上升,带隙宽度变宽;当磁电弹夹层中压电材料体积分数增加时,带隙中心频率下降,第一带隙宽度变窄,第二带隙宽度增加,第三带隙宽度保持不变;当磁电弹夹层中的压电材料种类不同时,带隙的中心频率和带隙宽度有明显的改变;磁电弹夹层对压电/压磁声子晶体带隙中心频率的影响在高频区比低频区更显著.
    Laminate piezoelectric (PE)/piezomagnetic (PM) composites consisting of alternating PE and PM layers can facilitate the conversion of energy between electric and magnetic fields, i.e., they possess the magneto-electric (ME) coupling effects, which recently has attracted much attention due to the huge potential applications in the field of high technology. The PE/PM phononic crystal is an ideal material for manufacturing high-tech precision parts such as resonator components, magnetoelectric sensors, weak magnetic field detectors, electric field tunable filters and magnetic field probes. In the practical applications, the adhesive interfaces of PE/PM phononic crystals are prone to deformation and failure during their use, because of the big difference between PE and PM material. In this paper, the magneto-electro-elastic (MEE) interlayer of magneto-electro-mechanical coupling is introduced into the PE/PM phononic crystal. The thickness of the MEE interlayer, the volume fraction of the piezoelectric material in the MEE interlayer and the type of the piezoelectric materials in the MEE interlayer are changed separately, with the thickness of the unit cell kept at a fixed value. The dispersion relation between the k and the is obtained by using the transfer matrix method and Bloch theorem. The influence of MEE interlayer on the band gap characteristics of PE/PM phononic crystal is studied by the dispersion relation diagram. The results show that as the thickness of the MEE interlayer increases, the central frequency of the band gaps shifts toward a higher frequency and the width of band gap becomes wider. As the volume fraction of the piezoelectric material increases, the center frequency and the width of the first band gap decrease. However, the width of the second band gap increases, and the width of the third band gap remains unchanged. The type of piezoelectric material in the MEE interlayer has an obvious influence on both the width and the central frequency of the band gaps. The effect of MEE interlayer on the central frequency of band gap of PE/PM phononic crystal is more significant in the high frequency region than in the low frequency region. Therefore, the width and central frequency of the band gaps can be adjusted to a certain extent by adding different MEE interlayers into the phononic crystal structure when designed.
      通信作者: 孙炜海, weihai_sun@163.com
    • 基金项目: 陆军装甲兵学院创新基金(批准号:2016CJ07)资助的课题.
      Corresponding author: Sun Wei-Hai, weihai_sun@163.com
    • Funds: Project supported by the Army Armored Forces Academy Innovation Foundation, China (Grant No. 2016CJ07).
    [1]

    Gao G Q, Ma S L, Jin F, Jin D F, Lu T X 2010 Acta Phys. Sin. 59 393 (in Chinese) [高国钦, 马守林, 金峰, 金东范, 卢天健 2010 物理学报 59 393]

    [2]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [3]

    Wu J, Bai X C, Xiao Y, Geng M X, Yu D L, Wen J H 2016 Acta Phys. Sin. 65 064602 (in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 064602]

    [4]

    Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [5]

    Zhang X, Liu Z, Liu Y, Wu F 2003 Phys. Lett. A 313 455

    [6]

    Wang G, Yu D, Wen J, Liu F, Wen X 2004 Phys. Lett. A 327 512

    [7]

    Wu L Y, Wu M L, Chen L W 2009 Smart. Mat. Str. 18 015011

    [8]

    Manzanaresmartnez B, Snchezdehesa J, Hkansson A 2004 Appl. Phys. Lett. 85 154

    [9]

    Boudouti E H E, Hassouani Y E, Aynaou H, DjafariRouhani B 2009 J. Acoust. Soc. Am. 123 3040

    [10]

    Qian Z, Jin F, Wang Z, Kishimoto K 2004 Int. J. Eng. Sci. 42 673

    [11]

    Pang Y, Liu J X, Wang Y S, Fang D N 2008 Acta Mech. Solida Sin. 21 483

    [12]

    Lan M, Wei P J 2014 Acta Mech. 225 1779

    [13]

    Pang Y, Wang Y S, Liu J X, Fang D N 2010 Smart Mater. Struct. 19 055012

    [14]

    Guo X, Wei P J, Lan M, Li L 2016 Ultrasonics 70 158

    [15]

    Zhu J, Chen W, Ye G 2012 Ultrasonics 52 125

    [16]

    Guo X, Wei P J, Li L, Lan M 2018 Appl. Math. Model. 55 569

    [17]

    Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids. Struct. 45 4203

    [18]

    Wang Y Z, Li F M, Kishimoto K, Wang Y S, Huang W H 2009 Wave Motion 46 47

    [19]

    Wang Y Z, Li F M 2012 Chin. Phys. Lett. 29 034301

    [20]

    Pang Y, Gao J S, Liu J X 2014 Ultrasonics 54 1341

    [21]

    Nie G Q, Liu J X, Fang X Q, An Z J 2012 Acta Mech. 223 1999

  • [1]

    Gao G Q, Ma S L, Jin F, Jin D F, Lu T X 2010 Acta Phys. Sin. 59 393 (in Chinese) [高国钦, 马守林, 金峰, 金东范, 卢天健 2010 物理学报 59 393]

    [2]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [3]

    Wu J, Bai X C, Xiao Y, Geng M X, Yu D L, Wen J H 2016 Acta Phys. Sin. 65 064602 (in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 064602]

    [4]

    Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [5]

    Zhang X, Liu Z, Liu Y, Wu F 2003 Phys. Lett. A 313 455

    [6]

    Wang G, Yu D, Wen J, Liu F, Wen X 2004 Phys. Lett. A 327 512

    [7]

    Wu L Y, Wu M L, Chen L W 2009 Smart. Mat. Str. 18 015011

    [8]

    Manzanaresmartnez B, Snchezdehesa J, Hkansson A 2004 Appl. Phys. Lett. 85 154

    [9]

    Boudouti E H E, Hassouani Y E, Aynaou H, DjafariRouhani B 2009 J. Acoust. Soc. Am. 123 3040

    [10]

    Qian Z, Jin F, Wang Z, Kishimoto K 2004 Int. J. Eng. Sci. 42 673

    [11]

    Pang Y, Liu J X, Wang Y S, Fang D N 2008 Acta Mech. Solida Sin. 21 483

    [12]

    Lan M, Wei P J 2014 Acta Mech. 225 1779

    [13]

    Pang Y, Wang Y S, Liu J X, Fang D N 2010 Smart Mater. Struct. 19 055012

    [14]

    Guo X, Wei P J, Lan M, Li L 2016 Ultrasonics 70 158

    [15]

    Zhu J, Chen W, Ye G 2012 Ultrasonics 52 125

    [16]

    Guo X, Wei P J, Li L, Lan M 2018 Appl. Math. Model. 55 569

    [17]

    Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids. Struct. 45 4203

    [18]

    Wang Y Z, Li F M, Kishimoto K, Wang Y S, Huang W H 2009 Wave Motion 46 47

    [19]

    Wang Y Z, Li F M 2012 Chin. Phys. Lett. 29 034301

    [20]

    Pang Y, Gao J S, Liu J X 2014 Ultrasonics 54 1341

    [21]

    Nie G Q, Liu J X, Fang X Q, An Z J 2012 Acta Mech. 223 1999

  • [1] 刘权兴, 何哲星, 李永强, 温激鸿, 肖勇. 超材料梁的双阶耦合带隙调控设计与宽带减振特性. 物理学报, 2024, 73(15): 154601. doi: 10.7498/aps.73.20240689
    [2] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [3] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [4] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [5] 张振方, 郁殿龙, 刘江伟, 温激鸿. 内插扩张室声子晶体管路带隙特性研究. 物理学报, 2018, 67(7): 074301. doi: 10.7498/aps.67.20172383
    [6] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [7] 沈丹萍, 张晓东, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. 负带隙HgCdTe体材料的磁输运特性研究. 物理学报, 2017, 66(24): 247301. doi: 10.7498/aps.66.247301
    [8] 刘娟, 胡锐, 范志强, 张振华. 过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应. 物理学报, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [9] 唐一璠, 林书玉. LCR分流电路下压电声子晶体智能材料的带隙. 物理学报, 2016, 65(16): 164202. doi: 10.7498/aps.65.164202
    [10] 苗信建, 黄伟其, 黄忠梅, 周年杰, 尹君. 通信波段硅基气孔光子晶体的带隙特性及其物理模型研究. 物理学报, 2014, 63(3): 030203. doi: 10.7498/aps.63.030203
    [11] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [12] 刘会, 刘丹, 赵恒, 高义华. 空气环型二维光子晶体完全带隙特性研究. 物理学报, 2013, 62(19): 194208. doi: 10.7498/aps.62.194208
    [13] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [14] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [15] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [16] 王伟, 曹祥玉, 王帅, 王瑞, 郑秋容. 支撑介质对平面型电磁带隙结构带隙特性的影响. 物理学报, 2009, 58(7): 4708-4716. doi: 10.7498/aps.58.4708
    [17] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [18] 郑奎松, 葛德彪. 周期性分层介质高反射区范围的分析与估计. 物理学报, 2006, 55(6): 2789-2793. doi: 10.7498/aps.55.2789
    [19] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [20] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性. 物理学报, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
计量
  • 文章访问数:  6127
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-09
  • 修回日期:  2018-08-18
  • 刊出日期:  2018-10-05

/

返回文章
返回