搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能够突破标准量子极限的原子双数态的制备研究

郑盟锟 尤力

引用本文:
Citation:

能够突破标准量子极限的原子双数态的制备研究

郑盟锟, 尤力

Generation of twin-Fock states for precision measurement beyond the standard quantum limit

Tey Meng-Khoon, You Li
PDF
导出引用
  • 所有经典的双模(两路径)干涉仪的相位测量精度都受限于1/√N(其中N为参与干涉测量的总粒子数),这一极限被称为经典极限或标准量子极限.量子计量学最重要的目标之一是探索如何通过量子纠缠实现超越经典极限的测量精度.双数态是一种能突破经典极限的纠缠态,它由数目相等、不可区分的自旋朝上和朝下(双模)玻色粒子组成.通过光学自发参量下转换或囚禁离子内态的操控手段已实现了不到十个光子或离子的双数态.利用玻色-爱因斯坦凝聚体中原子的自旋混合过程,近年来也能产生多达几千个原子的双数态.但是这样制备的双数态的总粒子数的随机涨落过大,限制了它们的实际应用潜力.最近,我们通过调控原子凝聚体中的量子相变,实现了超过一万个原子的双数态的确定性制备.本文简要综述这一研究进展.
    The highest precision achievable for a two-mode (two-path) classical interferometer is bounded by 1/√N (with NN
      Corresponding author: Tey Meng-Khoon, mengkhoon_tey@tsinghua.edu.cn;lyou@tsinghua.edu.cn ; You Li, mengkhoon_tey@tsinghua.edu.cn;lyou@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91636213, 91421305, 91736311, 11574177) and the National Basic Research Program of China (Grant Nos. 2014CB921403, 2018YFA0306504).
    [1]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102

    [2]

    Wineland D J, Bollinger J J, Itano W M, Moore F L, Heinzen D J 1992 Phys. Rev. A 46 6797

    [3]

    Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138

    [4]

    Hosten O, Engelsen N J, Krishnakumar R, Kasevich M A 2016 Nature 529 7587

    [5]

    Cox K C, Greve G P, Weiner J M, Thompson J K 2016 Phys. Rev. Lett. 116 093602

    [6]

    Berrada T, van Frank S, Bcker R, Schumm T, Schaff J F, Schmiedmayer J 2013 Nature Commun. 4 2077

    [7]

    Gross C, Zibold T, Nicklas E, Esteve J, Oberthaler M K 2010 Nature 464 1165

    [8]

    Riedel M F, Böhi P, Li Y, Hänsch T W, Sinatra A, Treutlein P 2010 Nature 464 1170

    [9]

    Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Foss-Feig M, Bollinger J J 2016 Science 352 1297

    [10]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801

    [11]

    Lee H, Kok P, Dowling J P 2002 J. Modern Opt. 49 2325

    [12]

    Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M, Blatt R 2011 Phys. Rev. Lett. 106 130506

    [13]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502

    [14]

    Wieczorek W, Krischek R, Kiesel N, Michelberger P, Tóth G, Weinfurter H 2009 Phys. Rev. Lett. 103 020504

    [15]

    Prevedel R, Cronenberg G, Tame M S, Paternostro M, Walther P, Kim M S, Zeilinger A 2009 Phys. Rev. Lett. 103 020503

    [16]

    Häffner H, Hänsel W, Roos C, Benhelm J, Chwalla M, Körber T, Rapol U, Riebe M, Schmidt P, Becher C, Ghne O, Dr W, Blatt R 2005 Nature 438 643

    [17]

    Haas F, Volz J, Gehr R, Reichel J, Estève J 2014 Science 344 180

    [18]

    Lcke B, Scherer M, Kruse J, Pezzé L, Deuretzbacher F, Hyllus P, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A, Klempt C 2011 Science 334 773

    [19]

    Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K, You L 2017 Science 355 620

    [20]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2016 arXiv preprint arXiv:1609.01609

    [21]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [22]

    Ma J, Wang X, Sun C, Nori F 2011 Phys. Reports 509 89

    [23]

    Mueller E J, Ho T L, Ueda M, Baym G 2006 Phys. Rev. A 74 033612

    [24]

    Holland M J, Burnett K 1993 Phys. Rev. Lett. 71 1355

    [25]

    Kiess T E, Shih Y H, Sergienko A V, Alley C O 1993 Phys. Rev. Lett. 71 3893

    [26]

    Kiesel N, Schmid C, Tóth G, Solano E, Weinfurter H 2007 Phys. Rev. Lett. 98 063604

    [27]

    Rowe M A, Kielpinski D, Meyer V, Sackett C A, Itano W M, Monroe C, Wineland D J 2001 Nature 409 791

    [28]

    Roos C F, Lancaster G P T, Riebe M, Häffner H, Hänsel W, Gulde S, Becher C, Eschner J, Schmidt-Kaler F, Blatt R 2004 Phys. Rev. Lett. 92 220402

    [29]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191

    [30]

    Gross C, Strobel H, Nicklas E, Zibold T, Bar-Gill N, Kurizki G, Oberthaler M K 2011 Nature 480 219

    [31]

    Bookjans E M, Hamley C D, Chapman M S 2011 Phys. Rev. Lett. 107 210406

    [32]

    Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257

    [33]

    Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K, You L 2018 Proc. Nat. Acad. Sci. USA 115 6381

  • [1]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102

    [2]

    Wineland D J, Bollinger J J, Itano W M, Moore F L, Heinzen D J 1992 Phys. Rev. A 46 6797

    [3]

    Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138

    [4]

    Hosten O, Engelsen N J, Krishnakumar R, Kasevich M A 2016 Nature 529 7587

    [5]

    Cox K C, Greve G P, Weiner J M, Thompson J K 2016 Phys. Rev. Lett. 116 093602

    [6]

    Berrada T, van Frank S, Bcker R, Schumm T, Schaff J F, Schmiedmayer J 2013 Nature Commun. 4 2077

    [7]

    Gross C, Zibold T, Nicklas E, Esteve J, Oberthaler M K 2010 Nature 464 1165

    [8]

    Riedel M F, Böhi P, Li Y, Hänsch T W, Sinatra A, Treutlein P 2010 Nature 464 1170

    [9]

    Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Foss-Feig M, Bollinger J J 2016 Science 352 1297

    [10]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801

    [11]

    Lee H, Kok P, Dowling J P 2002 J. Modern Opt. 49 2325

    [12]

    Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M, Blatt R 2011 Phys. Rev. Lett. 106 130506

    [13]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502

    [14]

    Wieczorek W, Krischek R, Kiesel N, Michelberger P, Tóth G, Weinfurter H 2009 Phys. Rev. Lett. 103 020504

    [15]

    Prevedel R, Cronenberg G, Tame M S, Paternostro M, Walther P, Kim M S, Zeilinger A 2009 Phys. Rev. Lett. 103 020503

    [16]

    Häffner H, Hänsel W, Roos C, Benhelm J, Chwalla M, Körber T, Rapol U, Riebe M, Schmidt P, Becher C, Ghne O, Dr W, Blatt R 2005 Nature 438 643

    [17]

    Haas F, Volz J, Gehr R, Reichel J, Estève J 2014 Science 344 180

    [18]

    Lcke B, Scherer M, Kruse J, Pezzé L, Deuretzbacher F, Hyllus P, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A, Klempt C 2011 Science 334 773

    [19]

    Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K, You L 2017 Science 355 620

    [20]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2016 arXiv preprint arXiv:1609.01609

    [21]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [22]

    Ma J, Wang X, Sun C, Nori F 2011 Phys. Reports 509 89

    [23]

    Mueller E J, Ho T L, Ueda M, Baym G 2006 Phys. Rev. A 74 033612

    [24]

    Holland M J, Burnett K 1993 Phys. Rev. Lett. 71 1355

    [25]

    Kiess T E, Shih Y H, Sergienko A V, Alley C O 1993 Phys. Rev. Lett. 71 3893

    [26]

    Kiesel N, Schmid C, Tóth G, Solano E, Weinfurter H 2007 Phys. Rev. Lett. 98 063604

    [27]

    Rowe M A, Kielpinski D, Meyer V, Sackett C A, Itano W M, Monroe C, Wineland D J 2001 Nature 409 791

    [28]

    Roos C F, Lancaster G P T, Riebe M, Häffner H, Hänsel W, Gulde S, Becher C, Eschner J, Schmidt-Kaler F, Blatt R 2004 Phys. Rev. Lett. 92 220402

    [29]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191

    [30]

    Gross C, Strobel H, Nicklas E, Zibold T, Bar-Gill N, Kurizki G, Oberthaler M K 2011 Nature 480 219

    [31]

    Bookjans E M, Hamley C D, Chapman M S 2011 Phys. Rev. Lett. 107 210406

    [32]

    Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257

    [33]

    Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K, You L 2018 Proc. Nat. Acad. Sci. USA 115 6381

  • [1] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展. 物理学报, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [2] 王明宇, 王馨德, 阮东, 龙桂鲁. 量子直接传态. 物理学报, 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [3] 范栋, 习振华, 贾文杰, 成永军, 李得天. 量子真空计量标准中的非极性稀薄气体折射率测量研究. 物理学报, 2021, 70(4): 040602. doi: 10.7498/aps.70.20201442
    [4] 冯海冉, 李鹏, 岳现房. 初态对线型分子体系量子速度极限度量的影响. 物理学报, 2019, 68(5): 050201. doi: 10.7498/aps.68.20181942
    [5] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [6] 冯啸天, 袁春华, 陈丽清, 陈洁菲, 张可烨, 张卫平. 光和原子关联与量子计量. 物理学报, 2018, 67(16): 164204. doi: 10.7498/aps.67.20180895
    [7] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享. 物理学报, 2016, 65(16): 160301. doi: 10.7498/aps.65.160301
    [8] 余海军, 钟国宝, 马建国, 任刚. 量子光学态的Ridgelet变换. 物理学报, 2013, 62(14): 144203. doi: 10.7498/aps.62.144203
    [9] 何锐, Bing He. 量子隐形传态的新方案. 物理学报, 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [10] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系. 物理学报, 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [11] 黄伟其, 王晓允, 张荣涛, 于示强, 秦朝建. 多孔硅量子点中的电子局域态. 物理学报, 2009, 58(7): 4652-4658. doi: 10.7498/aps.58.4652
    [12] 张 淼, 贾焕玉. 非Lamb-Dicke近似下制备囚禁冷离子的振动相干态. 物理学报, 2008, 57(2): 880-886. doi: 10.7498/aps.57.880
    [13] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [14] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [15] 邵常贵, 肖俊华, 邵亮, 邵丹, 陈贻汉, 潘贵军. 扩展的纽结量子引力态. 物理学报, 2002, 51(7): 1467-1474. doi: 10.7498/aps.51.1467
    [16] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [17] 张飞舟, 王 矫, 顾 雁. 量子混沌系统本征态的统计非遍历性及其半经典极限. 物理学报, 1999, 48(12): 2169-2179. doi: 10.7498/aps.48.2169
    [18] 郭江民, 阮文英, 刘有延. 磁场下量子点的电子态. 物理学报, 1996, 45(5): 854-859. doi: 10.7498/aps.45.854
    [19] 朱栋培, 王桂星, 王仁川. 量子混合态的统计角. 物理学报, 1992, 41(4): 543-549. doi: 10.7498/aps.41.543
    [20] 赵冷柱. 量子化极限情况下MOS反型层二维电子气定域态电子电导率σxx的低频效应. 物理学报, 1987, 36(4): 411-418. doi: 10.7498/aps.36.411
计量
  • 文章访问数:  8997
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-07-11
  • 刊出日期:  2019-08-20

/

返回文章
返回