搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子真空计量标准中的非极性稀薄气体折射率测量研究

范栋 习振华 贾文杰 成永军 李得天

引用本文:
Citation:

量子真空计量标准中的非极性稀薄气体折射率测量研究

范栋, 习振华, 贾文杰, 成永军, 李得天

Refractive index measurement of nonpolar rarefied gas in quantum vacuum metrology standard

Fan Dong, Xi Zhen-Hua, Jia Wen-Jie, Cheng Yong-Jun, Li De-Tian
PDF
HTML
导出引用
  • 为进一步提高真空量值的复现性和准确性, 最新研究采用量子技术实现对真空量值的测量与表征. 该方法利用Fabry-Perot谐振腔实现腔内气体折射率的精密测量, 并反演出气体密度, 进而获得对应的真空量值, 其中气体折射率的测量是影响真空量值准确性的关键. 本文基于第一性原理, 利用从头计算理论计算了在已知压力和温度条件下的氦气折射率, 给出腔内气体压力与折射率关系的表达式, 并利用基于Fabry-Perot激光谐振腔的真空测量装置, 通过双腔谐振激光拍频精确测量了充气前后谐振激光频率的变化, 测出了氦气折射率, 并分析了测量不确定度. 将理论计算值与实验测量值进行了对比分析, 得出了制约准确度提高的主要因素, 并提出了修正方法.
    In the face of the historical change of international measurement system, the classical physics based physical standard corresponding to many measurement parameters develops toward "natural standard", namely quantum standard. In order to further improve the reproducibility and accuracy of vacuum value, the latest research uses quantum technology to realize the measurement and characterization of vacuum value. In this method, Fabry- Perot cavity is used to accurately measure the refractive index of the gas. The density can be calculated by the refractive index and inversed to obtain the corresponding vacuum value. The measurement of the gas refractive index is the key to the accuracy of the vacuum value. The macroscopic permittivity of nonpolar gases is related to the microscopic polarization parameters of atoms through quantum dynamics. In recent years, with the rapid development of ab initio theory and methods on the electromagnetic and thermodynamic properties of monatomic molecules, the calculation accuracy of relevant parameters was constantly improved, which can further reduce the measurement uncertainty of the above methods. In this paper, the theoretical value of helium refractive index is calculated accurately based on the first principle with known pressure and temperature. The relationship between gas pressure and refractive index is obtained, and the relative uncertainty of the theoretical value of refractive index is 6.27 × 10–12. Then, the refractive index of helium in a range of 102–105 Pa is measured by the vacuum measuring device which is based on Fabry-Perot cavity, and the uncertainty of measurement is 9.59 × 10–8. Finally, the discrepancy between the theoretical and measured values of helium refractive index is compared and analyzed. It can be concluded that the the uncertainty of helium refractive index measurement originates from the deformation of the cavity caused by helium permeation. Therefore, solving the problem of helium permeation is the key to establishing a new vacuum standard. In this paper, the change of cavity length caused by helium penetration in the cavity is corrected. The refractive index coefficient is corrected at various pressure points in a vacuum range of 103–105 Pa, and its pressure-dependent expression is obtained The variation of cavity length caused by gas pressure is further quantified. The relationship between the change of cavity caused by gas pressure and that caused by the refractive index is obtained. The correction parameter of cavity length is calculated to be 3.12 × 10–2. In the future experiment of helium refractive index measurement by means of Fabry-Perot cavity, the refractive index correction coefficient at each pressure point given in this paper can be used to correct the refractive index measurement results, thereby eliminating the influence of helium penetration on the refractive index measurement, and obtaining the gas pressure with high accuracy.
      通信作者: 李得天, lidetian@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 62071209)资助的课题
      Corresponding author: Li De-Tian, lidetian@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071209)
    [1]

    Gibney E 2017 Nature 550 312Google Scholar

    [2]

    李得天, 成永军, 习振华 2018 宇航计测技术 38 1Google Scholar

    Li D T, Cheng Y J, Xi Z H 2018 Journal of Astronautic Metrology and Measurement 38 1Google Scholar

    [3]

    Egan P F, Stone J A, Scherschligt J K, Harvey A H 2019 J. Vac. Sci. Technol. A 37 031603Google Scholar

    [4]

    Silander I, Hausmaninger T, Zelan M, Axner O 2018 J. Vac. Sci. Technol. A 36 03E105

    [5]

    Egan P F, Stone J A 2011 Appl. Opt. 50 3076Google Scholar

    [6]

    Hendricks J H, Ricker J E, Stone J A, Egan P F, Scace G E, Strouse G F, Olson D A, Gerty D 2015 XXI IMEKO World Congress Measurement in Research and Industry” Prague, Czech Republic, August 30–September 4, 2015 p1636

    [7]

    Egan P, Stone J, Ricker J, Hendricks J 2016 2016 Conference on Precision Electromagnetic Measurements Ottawa, Canada, July 10–15, 2016 p1

    [8]

    Zelan M, Silander I, Hausmaninger T, Axner O 2017 arXiv: 1704.01185

    [9]

    Takei Y, Arai K, Yoshida H 2020 Measurement 151 107090Google Scholar

    [10]

    Axner O, Silander I, Hansmaninger T, Zelan M 2017 arXiv: 1704.01187

    [11]

    贾文杰, 习振华, 范栋, 董猛, 吴成耀, 成永军 2020 光学学报 40 2212005Google Scholar

    Jia W J, Xi Z H, Fan D, Dong M, Wu C Y, Cheng Y J 2020 Acta Opt. Sin. 40 2212005Google Scholar

    [12]

    许玉蓉, 刘洋洋, 王进, 孙羽, 习振华, 李得天, 胡水明 2020 物理学报 69 15

    Xu Y R, Liu Y Y, Wang J, Sun Y, Xi Z H, Li D T, Hu S M 2020 Acta Phys. Sin. 69 15

    [13]

    Bhatia A K, Drachman R J 1998 Phys. Rev. A. 58 4470Google Scholar

    [14]

    Hurly J J, Moldover M R 2000 Res. Natl. Inst. Stand. Technol. 105 667Google Scholar

    [15]

    Koch H, Hättig C, Larsen H, Olsen J, Jorgensen P, Fernandez B, Rizzo A 1999 J. Chem. Phys. 111 10108Google Scholar

    [16]

    Łach G, Jeziorski B, Szalewicz K 2004 Phys. Rev. Lett. 92 233001Google Scholar

    [17]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [18]

    Cencek W, Drzybytek M, Komasa J, Mehl J B, Jeziorski B 2012 J. Chem. Phys. 136 224303Google Scholar

    [19]

    Bich E, Hellmann R, Vogel E 2007 Mol. Phys. 105 3035Google Scholar

    [20]

    Rizzo K A, Hättig C, Fernández B, Koch H 2002 J. Chem. Phys. 117 2609Google Scholar

    [21]

    Bruch L W, Weinhold F 2002 J. Chem. Phys. 117 3243Google Scholar

    [22]

    Mohr P J, Newell D B, Taylor B N, Tiesinga E 2018 Metrologia 55 125Google Scholar

    [23]

    Acdiaj S, Yang Y C, Jousten K, Rubin T 2018 J. Chem. Phys. 148 116101Google Scholar

  • 图 1  基于F-P激光谐振腔的真空测量装置结构图 (a)部分为光路图;(b)部分为气路图 (1. 激光器; 2. 分束光纤; 3. 激光准直器; 4. 1/2波片; 5. 格兰棱镜; 6.透镜组; 7.电光调制器; 8. 光隔离器; 9. 偏振分光棱镜; 10. 1/4波片; 11. 高反镜; 12. 透镜; 13. 光电放大探测器; 14. PDH锁频装置; 15. 光电探测器; 16. 频率计; 17. 检测腔; 18. 参考腔; 19. 电容薄膜真空计; 20. 气瓶; 21. 冷阱; 22. 离子泵; 23. 电离规; 24. 分子泵; 25. 机械泵. 红色实线为光路; 黑色实线为光纤; 黑色虚线表示反馈作用; 蓝色实线为气路.)

    Fig. 1.  Structure diagram of vacuum measuring device based on F-P cavity.

    图 2  (a)102−103 Pa范围内折射率理论值与测量值对比图; (b) 103−105 Pa范围内折射率理论值与测量值对比图; (c) 102−105 Pa范围内折射率理论值与测量值总对比图

    Fig. 2.  (a) Comparison between theoretical and measured values of refractive index in the range of 102−103 Pa; (b) comparison between theoretical and measured values of refractive index in the range of 103−104 Pa; (c) total comparison between theoretical and measured values of refractive index in the range of 102−105 Pa.

    表 1  He极化率的展开系数(原子单位制)[17]

    Table 1.  Cofficients in the expansion of the polarizability of Helium.

    系数
    A01.3837295330(1)
    A23.2036661813(3) × 105
    A48.803569264(2) × 1010
    A62.6219915496(7) × 1016
    下载: 导出CSV

    表 2  折射率计算结果

    Table 2.  Calculation results of refractive index.

    序号 真空度 p/Pa 折射率 n – 1 序号 真空度 p/Pa 折射率 n – 1
    1 101 3.17726 × 10–8 13 4015 1.25716 × 10–6
    2 201 6.29408 × 10–8 14 7031 2.20149 × 10–6
    3 301 9.42498 × 10–8 15 10036 3.14235 × 10–6
    4 402 1.25916 × 10–7 16 20086 6.28879 × 10–6
    5 500 1.56736 × 10–7 17 30252 9.47123 × 10–6
    6 601 1.88312 × 10–7 18 40070 1.25445 × 10–5
    7 701 2.19523 × 10–7 19 50035 1.56690 × 10–5
    8 804 2.51819 × 10–7 20 60098 1.88127 × 10–5
    9 901 2.82417 × 10–7 21 70122 2.19495 × 10–5
    10 1075 3.36856 × 10–7 22 80111 2.50751 × 10–5
    11 2020 6.32721 × 10–7 23 90131 2.82100 × 10–5
    12 3012 9.43113 × 10–7 24 100166 3.13494 × 10–5
    下载: 导出CSV

    表 3  折射率测量结果

    Table 3.  Text results of refractive index.

    序号 真空度 p/Pa 折射率n – 1 序号 真空度 p/Pa 折射率n – 1
    1 101 3.93406 × 10–8 13 4015 1.23185 × 10–6
    2 201 7.02328 × 10–8 14 7031 1.69882 × 10–6
    3 301 1.01155 × 10–7 15 10036 2.53943 × 10–6
    4 402 1.32115 × 10–7 16 20086 5.48760 × 10–6
    5 500 1.61436 × 10–7 17 30252 8.46879 × 10–6
    6 601 1.92653 × 10–7 18 40070 1.13490 × 10–5
    7 701 2.24327 × 10–7 19 50035 1.42741 × 10–5
    8 804 2.56659 × 10–7 20 60098 1.72200 × 10–5
    9 901 2.87352 × 10–7 21 70122 2.01575 × 10–5
    10 1075 3.32603 × 10–7 22 80111 2.30841 × 10–5
    11 2020 6.27737 × 10–7 23 90131 2.61473 × 10–5
    12 3012 9.38649 × 10–7 24 100166 2.89609 × 10–5
    下载: 导出CSV

    表 4  折射率修正系数

    Table 4.  Refractive index correction coefficient.

    序号 真空度 p/Pa 修正系数 φ(p) 序号 真空度 p/Pa 修正系数 φ(p)
    1 1075 4.25267 × 10–9 13 40070 1.19548 × 10–6
    2 2020 4.98394 × 10–9 14 50053 1.39494 × 10–6
    3 3012 4.46381 × 10–9 15 60098 1.59267 × 10–6
    4 4015 2.53114 × 10–8 16 70122 1.79205 × 10–6
    5 7031 5.02669 × 10–7 17 80111 1.99100 × 10–6
    6 10036 6.02924 × 10–7 18 90131 2.06270 × 10–6
    7 20086 8.01189 × 10–7 19 100166 2.38851 × 10–6
    8 30252 1.00244 × 10–6
    下载: 导出CSV
  • [1]

    Gibney E 2017 Nature 550 312Google Scholar

    [2]

    李得天, 成永军, 习振华 2018 宇航计测技术 38 1Google Scholar

    Li D T, Cheng Y J, Xi Z H 2018 Journal of Astronautic Metrology and Measurement 38 1Google Scholar

    [3]

    Egan P F, Stone J A, Scherschligt J K, Harvey A H 2019 J. Vac. Sci. Technol. A 37 031603Google Scholar

    [4]

    Silander I, Hausmaninger T, Zelan M, Axner O 2018 J. Vac. Sci. Technol. A 36 03E105

    [5]

    Egan P F, Stone J A 2011 Appl. Opt. 50 3076Google Scholar

    [6]

    Hendricks J H, Ricker J E, Stone J A, Egan P F, Scace G E, Strouse G F, Olson D A, Gerty D 2015 XXI IMEKO World Congress Measurement in Research and Industry” Prague, Czech Republic, August 30–September 4, 2015 p1636

    [7]

    Egan P, Stone J, Ricker J, Hendricks J 2016 2016 Conference on Precision Electromagnetic Measurements Ottawa, Canada, July 10–15, 2016 p1

    [8]

    Zelan M, Silander I, Hausmaninger T, Axner O 2017 arXiv: 1704.01185

    [9]

    Takei Y, Arai K, Yoshida H 2020 Measurement 151 107090Google Scholar

    [10]

    Axner O, Silander I, Hansmaninger T, Zelan M 2017 arXiv: 1704.01187

    [11]

    贾文杰, 习振华, 范栋, 董猛, 吴成耀, 成永军 2020 光学学报 40 2212005Google Scholar

    Jia W J, Xi Z H, Fan D, Dong M, Wu C Y, Cheng Y J 2020 Acta Opt. Sin. 40 2212005Google Scholar

    [12]

    许玉蓉, 刘洋洋, 王进, 孙羽, 习振华, 李得天, 胡水明 2020 物理学报 69 15

    Xu Y R, Liu Y Y, Wang J, Sun Y, Xi Z H, Li D T, Hu S M 2020 Acta Phys. Sin. 69 15

    [13]

    Bhatia A K, Drachman R J 1998 Phys. Rev. A. 58 4470Google Scholar

    [14]

    Hurly J J, Moldover M R 2000 Res. Natl. Inst. Stand. Technol. 105 667Google Scholar

    [15]

    Koch H, Hättig C, Larsen H, Olsen J, Jorgensen P, Fernandez B, Rizzo A 1999 J. Chem. Phys. 111 10108Google Scholar

    [16]

    Łach G, Jeziorski B, Szalewicz K 2004 Phys. Rev. Lett. 92 233001Google Scholar

    [17]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [18]

    Cencek W, Drzybytek M, Komasa J, Mehl J B, Jeziorski B 2012 J. Chem. Phys. 136 224303Google Scholar

    [19]

    Bich E, Hellmann R, Vogel E 2007 Mol. Phys. 105 3035Google Scholar

    [20]

    Rizzo K A, Hättig C, Fernández B, Koch H 2002 J. Chem. Phys. 117 2609Google Scholar

    [21]

    Bruch L W, Weinhold F 2002 J. Chem. Phys. 117 3243Google Scholar

    [22]

    Mohr P J, Newell D B, Taylor B N, Tiesinga E 2018 Metrologia 55 125Google Scholar

    [23]

    Acdiaj S, Yang Y C, Jousten K, Rubin T 2018 J. Chem. Phys. 148 116101Google Scholar

  • [1] 刘洋洋, 胡常乐, 孙羽, 王进, 胡水明. 双腔比对折射率法测定气体压力. 物理学报, 2022, 71(8): 080601. doi: 10.7498/aps.71.20212234
    [2] 徐自强, 吴晓庆, 许满满, 毕翠翠, 韩永, 邵士勇. 海洋上空折射率结构常数廓线估算. 物理学报, 2021, 70(24): 244204. doi: 10.7498/aps.70.20211201
    [3] 张翔宇, 刘会刚, 康明, 刘波, 刘海涛. 金属-介质-金属多层结构可调谐Fabry-Perot共振及高灵敏折射率传感. 物理学报, 2021, 70(14): 140702. doi: 10.7498/aps.70.20202058
    [4] 许玉蓉, 刘洋洋, 王进, 孙羽, 习振华, 李得天, 胡水明. 基于气体折射率方法的真空计量. 物理学报, 2020, 69(15): 150601. doi: 10.7498/aps.69.20200706
    [5] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [6] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线. 物理学报, 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [7] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [8] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [9] 刘晓波, 施宏宇, 陈博, 蒋延生, 徐卓, 张安学. 折射率梯度表面机理的研究. 物理学报, 2014, 63(21): 214201. doi: 10.7498/aps.63.214201
    [10] 周文飞, 叶小玲, 徐波, 张世著, 王占国. 有效折射率微扰法研究单缺陷光子晶体平板微腔的性质. 物理学报, 2012, 61(5): 054202. doi: 10.7498/aps.61.054202
    [11] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [12] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射. 物理学报, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [13] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究. 物理学报, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [14] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究. 物理学报, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [15] 汤世伟, 朱卫仁, 赵晓鹏. 光波段多频负折射率超材料. 物理学报, 2009, 58(5): 3220-3223. doi: 10.7498/aps.58.3220
    [16] 沈自才, 沈 建, 刘世杰, 孔伟金, 邵建达, 范正修. 渐变折射率薄膜的分层评价探讨. 物理学报, 2007, 56(3): 1325-1328. doi: 10.7498/aps.56.1325
    [17] 曾 然, 许静平, 羊亚平, 刘树田. 负折射率材料对Casimir效应的影响. 物理学报, 2007, 56(11): 6446-6450. doi: 10.7498/aps.56.6446
    [18] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [19] 沈自才, 孔伟金, 刘世杰, 沈 建, 邵建达, 范正修. 斜角入射沉积法制备渐变折射率薄膜的折射率分析. 物理学报, 2006, 55(10): 5157-5160. doi: 10.7498/aps.55.5157
    [20] 殷宗敏, 祝颂来. 锥形梯度折射率纤维的成像特性. 物理学报, 1981, 30(12): 1603-1608. doi: 10.7498/aps.30.1603
计量
  • 文章访问数:  4933
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-10-20
  • 上网日期:  2021-02-05
  • 刊出日期:  2021-02-20

/

返回文章
返回