搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合界面力的两相流相场格子Boltzmann模型

李洋 苏婷 梁宏 徐江荣

引用本文:
Citation:

耦合界面力的两相流相场格子Boltzmann模型

李洋, 苏婷, 梁宏, 徐江荣

Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force

Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong
PDF
导出引用
  • 提出了一种改进的基于相场理论的两相流格子Boltzmann模型.通过引入一种新的更加简化的外力项分布函数,使得此模型克服了前人工作中界面力尺度与理论分析不一致的问题,并且通过Chapman-Enskog多尺度分析表明,所提出的模型能够准确恢复到追踪界面的Cahn-Hilliard方程和不可压的Navier-Stokes方程,并且宏观速度的计算更为简化.利用所提模型对几个经典两相流问题,包括静态液滴测试、液滴合并问题、亚稳态分解以及瑞利-泰勒不稳定性进行了数值模拟,发现本模型可以获得量级为10-9极小的虚假速度,并且这些算例获取的数值解与解析解或已有的文献结果相吻合,从而验证了模型的准确性和可行性.最后,利用所发展的两相流格子Boltzmann模型研究了随机扰动的瑞利-泰勒不稳定性问题,并着重分析了雷诺数对流体相界面的影响.发现对于高雷诺数情形,在演化前期,流体界面出现一排“蘑菇”形状,而在演化后期,流体界面呈现十分复杂的混沌拓扑结构.不同于高雷诺数情形,低雷诺数时流体界面变得相对光滑,在演化后期未观察到混沌拓扑结构.
    The phase field model has become increasingly popular due to its underlying physics for describing two-phase interface dynamics. In this case, several lattice Boltzmann multiphase models have been constructed from the perspective of the phase field theory. All these models are composed of two distribution functions: one is used to solve the interface tracking equation and the other is adopted to solve the Navier-Stokes equations. It has been reported that to match the target equation, an additional interfacial force should be included in these models, but the scale of this force is found to be contradictory with the theoretical analysis. To solve this problem, in this paper an improved lattice Boltzmann model based on the Cahn-Hilliard phase-field theory is proposed for simulating two-phase flows. By introducing a novel and simple force distribution function, the improved model solves the problem that the scale of an additional interfacial force is not consistent with the theoretical one. The Chapman-Enskog analysis shows that the present model can accurately recover the Cahn-Hilliard equation for interface capturing and the incompressible Navier-Stokes equations, and the calculation of macroscopic velocity is also more efficient. A series of classic two-phase flow examples, including static drop test, droplets emerge, spinodal decomposition and Rayleigh-Taylor instability is simulated numerically. It is found that the numerical solutions agree well with the analytical solutions or the existing results, which verifies the accuracy and feasibility of the proposed model. In addition, the Rayleigh-Taylor instability with the imposed random perturbation is also simulated, where the influence of the Reynolds number on the evolution of the phase interface is analyzed. It is found that for the case of the high Reynolds number, a row of “mushroom” shape appears at the fluid interface in the early stages of evolution. At the later stages of evolution, the fluid interface presents a very complex chaotic topology. Unlike the case of the high Reynolds number, the fluid interface becomes relatively smooth at low Reynolds numbers, and no chaotic topology is observed at any of the later stages of evolution.
    [1]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) [郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社)]

    [2]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid. Mech. 30 329

    [3]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [4]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

    [5]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [6]

    Zu Y Q, He S 2013 Phys. Rev. E 87 043301

    [7]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320

    [8]

    Liang H, Chai Z H, Shi B C, Guo Z L, Zhang T 2014 Phys. Rev. E 90 063311

    [9]

    Liang H, Xu J R, Chen J X, Wang H L, Chai Z H, Shi B C, Chai Z H 2018 Phys. Rev. E 97 033309

    [10]

    Liang H, Shi B C, Chai Z H 2016 Phys. Rev. E 93 013308

    [11]

    Liang H, Li Q X, Shi B C, Chai Z H 2016 Phys. Rev. E 93 033113

    [12]

    Liang H, Chai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701 (in Chinese) [梁宏, 柴振华, 施保昌 2016 物理学报 65 204701]

    [13]

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese) [黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 物理学报 65 084702]

    [14]

    Lou Q, Guo Z L, Shi B C 2012 Europhys. Lett. 99 64005

    [15]

    Li Q, Luo K H, Gao Y J, He Y L 2012 Phys. Rev. E 85 026704

    [16]

    Wang Y, Shu C, Shao J Y, Wu J, Niu X D 2015 J. Comput. Phys. 290 336

    [17]

    Yang K, Guo Z L 2016 Phys. Rev. E 723 043303

    [18]

    Rayleigh L 1883 Proc. London Math. Soc. 14 1

    [19]

    Taylor G 1950 Proc. Roy. Soc. London 201 192

    [20]

    Zhou Y 2017 Phys. Rep. 91 013309

    [21]

    Liang H, Li Y, Chen J X, Xu J R 2018 Int. J. Heat Mass. Tran. 130 1189

  • [1]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) [郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社)]

    [2]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid. Mech. 30 329

    [3]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [4]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

    [5]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [6]

    Zu Y Q, He S 2013 Phys. Rev. E 87 043301

    [7]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320

    [8]

    Liang H, Chai Z H, Shi B C, Guo Z L, Zhang T 2014 Phys. Rev. E 90 063311

    [9]

    Liang H, Xu J R, Chen J X, Wang H L, Chai Z H, Shi B C, Chai Z H 2018 Phys. Rev. E 97 033309

    [10]

    Liang H, Shi B C, Chai Z H 2016 Phys. Rev. E 93 013308

    [11]

    Liang H, Li Q X, Shi B C, Chai Z H 2016 Phys. Rev. E 93 033113

    [12]

    Liang H, Chai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701 (in Chinese) [梁宏, 柴振华, 施保昌 2016 物理学报 65 204701]

    [13]

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese) [黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 物理学报 65 084702]

    [14]

    Lou Q, Guo Z L, Shi B C 2012 Europhys. Lett. 99 64005

    [15]

    Li Q, Luo K H, Gao Y J, He Y L 2012 Phys. Rev. E 85 026704

    [16]

    Wang Y, Shu C, Shao J Y, Wu J, Niu X D 2015 J. Comput. Phys. 290 336

    [17]

    Yang K, Guo Z L 2016 Phys. Rev. E 723 043303

    [18]

    Rayleigh L 1883 Proc. London Math. Soc. 14 1

    [19]

    Taylor G 1950 Proc. Roy. Soc. London 201 192

    [20]

    Zhou Y 2017 Phys. Rep. 91 013309

    [21]

    Liang H, Li Y, Chen J X, Xu J R 2018 Int. J. Heat Mass. Tran. 130 1189

  • [1] 陈百慧, 施保昌, 汪垒, 柴振华. 基于GPU的二维梯形空腔流的格子Boltzmann模拟与分析. 物理学报, 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [2] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [3] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [4] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [5] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [6] 杨秀峰, 刘谋斌. 瑞利-泰勒不稳定问题的光滑粒子法模拟研究. 物理学报, 2017, 66(16): 164701. doi: 10.7498/aps.66.164701
    [7] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [8] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响. 物理学报, 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [9] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [10] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟. 物理学报, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [11] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [12] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [13] 高忠科, 胡沥丹, 周婷婷, 金宁德. 两相流有限穿越可视图演化动力学研究. 物理学报, 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [14] 赵俊英, 金宁德. 两相流相空间多元图重心轨迹动力学特征. 物理学报, 2012, 61(9): 094701. doi: 10.7498/aps.61.094701
    [15] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [16] 陈高飞, 公茂琼, 沈俊, 邹鑫, 吴剑峰. 水平管内二氟乙烷两相流动摩擦压降实验研究. 物理学报, 2010, 59(12): 8669-8675. doi: 10.7498/aps.59.8669
    [17] 方智恒, 王伟, 贾果, 董佳钦, 熊俊, 郑无敌, 李永升, 罗平庆, 傅思祖, 顾援, 王世绩. 高温烧蚀初始印记及其瑞利-泰勒不稳定性发展的研究. 物理学报, 2009, 58(10): 7057-7061. doi: 10.7498/aps.58.7057
    [18] 董 芳, 金宁德, 宗艳波, 王振亚. 两相流流型动力学特征多尺度递归定量分析. 物理学报, 2008, 57(10): 6145-6154. doi: 10.7498/aps.57.6145
    [19] 吴俊峰, 叶文华, 张维岩, 贺贤土. 二维不可压流体瑞利-泰勒不稳定性的非线性阈值公式. 物理学报, 2003, 52(7): 1688-1693. doi: 10.7498/aps.52.1688
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  7673
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-25
  • 修回日期:  2018-09-14
  • 刊出日期:  2019-11-20

/

返回文章
返回