搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过抑制波头旋转消除心脏中的螺旋波和时空混沌

李倩昀 黄志精 唐国宁

引用本文:
Citation:

通过抑制波头旋转消除心脏中的螺旋波和时空混沌

李倩昀, 黄志精, 唐国宁

Eliminating spiral wave and spatiotemporal chaos in cardiac tissues by suppressing the rotation of spiral wave tip

Li Qian-Yun, Huang Zhi-Jing, Tang Guo-Ning
PDF
导出引用
  • 本文采用Luo-Rudy相I模型研究如何通过调控心肌细胞钠电流变化来控制心脏中的螺旋波和时空混沌,提出了这样的钠电流调控方案:当细胞将被激发时启动钠电流调节,若由模型方程得到的钠电流的绝对值小于钠电流控制阈值的绝对值,就让钠电流等于钠电流控制阈值,其他情况下则限制钠电流的绝对值不能高于一个给定的最大值;当膜电位上升超过-5 mV时,让钠电流自然演化.这种调节钠电流的方式保证了所有细胞几乎具有相同的钠电流幅值,从而使所有细胞具有相同的激发性,数值模拟结果表明,只要钠电流控制阈值达到一定临界值,就可以有效抑制螺旋波波头的旋转,导致螺旋波运动出系统边界而消失,以及时空混沌演化为螺旋波后消失,如果钠电流控制阈值足够大,螺旋波和时空混沌还可通过传导障碍而消失.这些结果能够为抗心律失常治疗提供新的思路.
    The variation of the function of sodium channel in cardiomyocyte is associated with multiple cardiac diseases. Increasing sodium channel availability can effectively increase sodium influx, leading to enhanced cardiomyocyte excitability, prolonged action potential duration and late sodium current activity, which may cause ventricular arrhythmia. On the other hand, enhancing cardiomyocyte excitability can effectively increase the conduction velocity of the medium in the rotation center of spiral wave, which can restrain the rotation of spiral wave, leading to the disappearance of spiral wave. However, how to increase the excitability of cardiomyocytes while avoiding arrhythmias has not yet been explored so far. In this paper, we study how to regulate the changes of sodium current in cardiac myocytes to control spiral wave and spatiotemporal chaos in a two-dimensional cardiac tissues by using the Luo-Rudy phase I model. We propose such a sodium current control scheme:when the cell is excited, the regulation of sodium current begins. If the absolute value of sodium current obtained from the model equation is less than the absolute value of sodium current control threshold, the sodium current is simply equal to the control threshold of sodium current. In other cases, the absolute value of sodium current cannot exceed the maximum value without control. When the membrane potential rises over-5 mV, the sodium current evolves naturally. This method of regulating sodium current ensures that all cells have almost the same amplitude of sodium current, while without obviously changing the excitation-time. All cells thus have the same excitability under the control of sodium current, so that the excitation of cell is less affected by spiral wave tip. The numerical simulation results show that as long as the control threshold of sodium current reaches a critical value, the rotation of spiral wave tip is effectively suppressed, causing spiral wave to move out of the system boundary and spatiotemporal chaos to disappear after it has evolved into a spiral wave. If the absolute value of sodium current control threshold is large enough, the spiral wave and spatiotemporal chaos would also disappear through conductive block. These results can provide a new idea for antiarrhythmic therapy.
    • 基金项目: 国家自然科学基金(批准号:11565005,11365003,11747307)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11565005, 11365003, 11747307).
    [1]

    Cherry E M, Fenton F H 2008 New J. Phys. 10 125016

    [2]

    Panfilov A V 1998 Chaos 8 57

    [3]

    Panfilov A V, Holden A V 1990 Phys. Lett. A 151 23

    [4]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349

    [5]

    Shajahan T K, Nayak A R, Pandit R 2009 PLoS One 4 e4738

    [6]

    Burton R A B, Klimas A, Ambrosi C M, Tomek J, Corbett A, Entcheva E, Bub G 2015 Nat. Photon. 9 813

    [7]

    Pan D B, Gao X, Feng X, Pan J T, Zhang H 2016 Sci. Rep. 6 21876

    [8]

    Yamazaki M, Honjo H, Nakagawa H, Ishiguro Y S, OkunoY, Amino M, Sakuma I, Kamiya K, Kodama I 2007 Am. J. Physiol. Heart Circ. Physiol. 292 H539

    [9]

    Hajjar K, Berbari I, Tawil C E, Chebl R B, Dagher G A 2018 Am. J. Emerg. Med. 36 1474

    [10]

    Manzoni G M, Castelnuovo G, Compare A, Pagnini F, Essebag V, Proietti R 2015 Front. Psychol. 6 39

    [11]

    Boink G J J, Christoffels V M, Robinson R B, Tan H L 2015 Trends Cardiovas. Med. 25 674

    [12]

    Costabal F S, Yao J, Kuhl E 2018 Int. J. Numer. Methods Bio. 34 e2964

    [13]

    Walcott G P, Killingsworth C R, Ideker R E 2003 Resuscitation 59 59

    [14]

    Shajaha T K, Nayak A R, Pandit R 2009 PLoS One 4 e4738

    [15]

    Yamazaki M, Honjo H, Ashihara T, Harada M, Sakuma I, Nakazawa K, Trayanova N, Hori M, Kalifa J, Jalife J, Kamiya K, Kodama I 2012 Heart Rhythm 9 107

    [16]

    Stamp A T, Osipov G V, Collins J J 2002 Chaos 12 931

    [17]

    Ji L, Zhou Y, Li Q, Qiao C, Ouyang Q 2013 Phys. Rev. E 88 042919

    [18]

    Luther S, Fenton F H, Kornreich B G, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry E M, Luther G, Hasenfuss G, Krinsky V I, Pumir A, Gilmour Jr R F, Bodenschatz E 2011 Nature 475 235

    [19]

    Hörning M, Takagi S, Yoshikawa K 2012 Phys. Rev. E 85 061906

    [20]

    Chen J X, Zhang H, Qiao L Y, Liang H, Sun W G 2018 Commun. Nonlinear Sci. Numer. Simul. 54 202

    [21]

    Chen J X, Guo M M, Ma J 2016 EPL 113 38004

    [22]

    Ouyang Q, Swinney H L, Li G 2000 Phys. Rev. Lett. 84 1047

    [23]

    Pei Z F, Xiao Y C, Meng J W, Hudmon A, Cummins T R 2016 Nat. Commun. 7 12035

    [24]

    Müller-Ehmsen J, Brixius K, Schwinger R H 1998 J. Cardiovasc. Pharmacol. 31 684

    [25]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501

  • [1]

    Cherry E M, Fenton F H 2008 New J. Phys. 10 125016

    [2]

    Panfilov A V 1998 Chaos 8 57

    [3]

    Panfilov A V, Holden A V 1990 Phys. Lett. A 151 23

    [4]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349

    [5]

    Shajahan T K, Nayak A R, Pandit R 2009 PLoS One 4 e4738

    [6]

    Burton R A B, Klimas A, Ambrosi C M, Tomek J, Corbett A, Entcheva E, Bub G 2015 Nat. Photon. 9 813

    [7]

    Pan D B, Gao X, Feng X, Pan J T, Zhang H 2016 Sci. Rep. 6 21876

    [8]

    Yamazaki M, Honjo H, Nakagawa H, Ishiguro Y S, OkunoY, Amino M, Sakuma I, Kamiya K, Kodama I 2007 Am. J. Physiol. Heart Circ. Physiol. 292 H539

    [9]

    Hajjar K, Berbari I, Tawil C E, Chebl R B, Dagher G A 2018 Am. J. Emerg. Med. 36 1474

    [10]

    Manzoni G M, Castelnuovo G, Compare A, Pagnini F, Essebag V, Proietti R 2015 Front. Psychol. 6 39

    [11]

    Boink G J J, Christoffels V M, Robinson R B, Tan H L 2015 Trends Cardiovas. Med. 25 674

    [12]

    Costabal F S, Yao J, Kuhl E 2018 Int. J. Numer. Methods Bio. 34 e2964

    [13]

    Walcott G P, Killingsworth C R, Ideker R E 2003 Resuscitation 59 59

    [14]

    Shajaha T K, Nayak A R, Pandit R 2009 PLoS One 4 e4738

    [15]

    Yamazaki M, Honjo H, Ashihara T, Harada M, Sakuma I, Nakazawa K, Trayanova N, Hori M, Kalifa J, Jalife J, Kamiya K, Kodama I 2012 Heart Rhythm 9 107

    [16]

    Stamp A T, Osipov G V, Collins J J 2002 Chaos 12 931

    [17]

    Ji L, Zhou Y, Li Q, Qiao C, Ouyang Q 2013 Phys. Rev. E 88 042919

    [18]

    Luther S, Fenton F H, Kornreich B G, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry E M, Luther G, Hasenfuss G, Krinsky V I, Pumir A, Gilmour Jr R F, Bodenschatz E 2011 Nature 475 235

    [19]

    Hörning M, Takagi S, Yoshikawa K 2012 Phys. Rev. E 85 061906

    [20]

    Chen J X, Zhang H, Qiao L Y, Liang H, Sun W G 2018 Commun. Nonlinear Sci. Numer. Simul. 54 202

    [21]

    Chen J X, Guo M M, Ma J 2016 EPL 113 38004

    [22]

    Ouyang Q, Swinney H L, Li G 2000 Phys. Rev. Lett. 84 1047

    [23]

    Pei Z F, Xiao Y C, Meng J W, Hudmon A, Cummins T R 2016 Nat. Commun. 7 12035

    [24]

    Müller-Ehmsen J, Brixius K, Schwinger R H 1998 J. Cardiovasc. Pharmacol. 31 684

    [25]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501

  • [1] 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制. 物理学报, 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [2] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [3] 王小艳, 汪芃, 李倩昀, 唐国宁. 用晚钠电流终止心脏中的螺旋波和时空混沌. 物理学报, 2017, 66(13): 138201. doi: 10.7498/aps.66.138201
    [4] 潘飞, 王小艳, 汪芃, 黎维新, 唐国宁. 通过放慢钠通道开闭控制心脏中的螺旋波和时空混沌. 物理学报, 2016, 65(19): 198201. doi: 10.7498/aps.65.198201
    [5] 乔成功, 李伟恒, 唐国宁. 细胞外钾离子浓度延迟恢复对螺旋波的影响研究. 物理学报, 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [6] 袁国勇, 张焕, 王光瑞. 多可激性障碍下的螺旋波动力学. 物理学报, 2013, 62(16): 160502. doi: 10.7498/aps.62.160502
    [7] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [8] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌. 物理学报, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [9] 钱郁. 时空调制对可激发介质螺旋波波头动力学行为影响及控制研究. 物理学报, 2012, 61(15): 158202. doi: 10.7498/aps.61.158202
    [10] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [11] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [12] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究. 物理学报, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [13] 祝金川, 李成仁, 齐笳羽, 任旭东, 岳喜爽. CO2激光器对相位共轭波时空混沌系统控制和同步的研究. 物理学报, 2011, 60(10): 104213. doi: 10.7498/aps.60.104213
    [14] 钟敏, 唐国宁. 用钙离子通道激动剂抑制心脏组织中的螺旋波和时空混沌. 物理学报, 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [15] 钟敏, 唐国宁. 局域反馈抑制心脏中的螺旋波和时空混沌. 物理学报, 2010, 59(3): 1593-1599. doi: 10.7498/aps.59.1593
    [16] 杨朝羽, 唐国宁. 基于蜂拥控制算法思想的时空混沌耦合反馈控制. 物理学报, 2009, 58(1): 143-149. doi: 10.7498/aps.58.143
    [17] 高继华, 谢玲玲, 彭建华. 利用速度反馈方法控制时空混沌. 物理学报, 2009, 58(8): 5218-5223. doi: 10.7498/aps.58.5218
    [18] 岳立娟, 沈 柯, 徐明奇. 非线性反馈法控制相位共轭波的光学时空混沌. 物理学报, 2007, 56(8): 4378-4382. doi: 10.7498/aps.56.4378
    [19] 陶朝海, 陆君安. 统一混沌系统的控制. 物理学报, 2003, 52(2): 281-284. doi: 10.7498/aps.52.281
    [20] 张旭, 沈柯. 耦合映象格子中时空混沌的控制. 物理学报, 2001, 50(4): 624-628. doi: 10.7498/aps.50.624
计量
  • 文章访问数:  6571
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-04
  • 修回日期:  2018-09-21
  • 刊出日期:  2019-12-20

/

返回文章
返回