搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多引导滤波的图像增强算法

刘杰 张建勋 代煜

引用本文:
Citation:

基于多引导滤波的图像增强算法

刘杰, 张建勋, 代煜

Image enhancement based on multi-guided filtering

Liu Jie, Zhang Jian-Xun, Dai Yu
PDF
导出引用
  • 图像增强技术可以有效地突出图像中的有用信息,已广泛应用于多个领域.现有的图像增强算法往往无法应对自然图像中复杂的梯度分布,难以准确保持图像中前景与背景的边缘信息.为了改善输出图像的边界过平滑问题,本文提出了一个基于多引导滤波的图像增强算法.首先,设计了一个以滤波核为变量的通用图像优化模型,现有的联合滤波器可视为该模型的解;然后,依据集成学习的思想,将联合滤波器中的单幅引导图像扩展到多幅,以更好地利用引导图中的结构信息进而获得更好的输出结果,并给出了一个多幅引导图的来源途径;最后,对多幅输出图像进行平滑,在图像优化模型中加入正则化项,以确保由多引导滤波得到的不同滤波输出保持一致.实验结果表明,本文算法在抑制图像噪声的同时,可以更好地保留物体的边界信息,从而使图像的信噪比进一步提升.
    Image enhancement, as a basic image proicessing technique, contains much research content, such as enhance contrast, image restoration, noise reduction, image sharpening, distortion correction, etc. The purpose of image enhancement is to effectively highlight the useful information in target image and suppress noise as well. The conventional image enhancement methods are always powerless to tackle the complicated gradient distributions in natural images, and they are also difficult to retain the information about edges accurately. For improving the status of over-smoothing on boundaries, we propose an image enhancement method based on multi-guided filtering. We first synthetically analyze the property of joint filtering and propose the general image optimization model in which the variable parameter is filter kernel. Different filter kernel in the optimization model above generate different filtering method. That is to say, we can use this model to describe the image enhancement problems. The existing joint filters can be regarded as close form solutions of the optimization model above. Inspired by ensemble theory, we use multiple guided images in joint filtering instead of a single guided image to make full use of structure information. By doing so, the image enhancement based on multi-guided filtering can obtain more accurate filtering results. In order to keep the consistency among the multiple filtering outputs of multi-guided filtering method, we add a regularization term into a general image optimization model. We also take into consideration the consistency of pixels in the same image. The experimental results about the noise reduction and image enhancement show that the image enhancement based on multi-guided filtering can give rise to significant outputs. The peak-signal-to-noise ratio of output image of proposed method is higher than those from the traditional image enhancement methods. Therefore, the image enhancement based on multi-guided filtering can improve the quality of digital images efficiently and effectively. This provides a good precondition for subsequent image processing steps and has a prospect of very wide application.
    • 基金项目: 国家重点研发计划(批准号:2017YFC0110402)和天津市自然科学基金(批准号:18JCYBJC18800)资助的课题.
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0110402) and the Natural Science Foundation of Tianjin, China (Grant No. 18JCYBJC18800).
    [1]

    Rahman Z U, Jobson D J 2004 J. Electron. Imaging 13 100

    [2]

    Seow M J, Asari V K 2006 Neurocomputing 69 954

    [3]

    Kimmel R, Elad M, Shaked D, Keshet R, Sobel L 2003 Int. J. Comput. Vision 52 7

    [4]

    Rong Z, Li Z, Li D N 2015 Optik 126 5665

    [5]

    Zeng L, Chen J, Tong L, Yan B, Ping X J 2013 Proceedings of the International Conference on Medical Imaging Physics and Engineering Shenyang, China, October 19-20, 2013 p269

    [6]

    Perona P, Malik J 1990 IEEE Trans. Pattern Anal. Mach. Intell. 12 629

    [7]

    Petschnigg G, Agrawala M, Hoppe H, Szeliski R, Cohen M, Toyama K 2004 ACM Trans. Graph. 23 664

    [8]

    Tomasi C, Manduchi R 1998 IEEE International Conference on Computer Vision Bombay, India January 4-7, 1998 p839

    [9]

    Aurich V, Weule J 1995 Proceedings of DAGM Symposium London, UK, September 13-15, 1995 p538

    [10]

    He K M, Sun J, Tang X O 2013 IEEE Trans. Pattern Anal. Mach. Intell. 35 1397

    [11]

    Gastal E S L, Oliveira M M 2011 ACM Trans. Graph. 30 69

    [12]

    Kou F, Chen W H, Wen C Y, Li Z G 2015 IEEE Trans. Image Process. 24 4528

    [13]

    Li Z G, Zheng J H, Zhu Z J, Yao W, Wu S Q 2014 IEEE Trans. Image Process. 24 120

    [14]

    Zhang Q, Shen X Y, Xu L, Jia J Y 2014 European Conference on Computer Vision Zurich, Switzerland, September 6-12, 2014 p815

    [15]

    Dai L Q, Yuan M K, Zhang F H, Zhang X P 2015 IEEE International Conference on Computer Vision Santiago, Chile, December 11-18, 2015 p352

    [16]

    Dai L Q, Yuan M K, Li Z C, Zhang X P, Tang J H 2017 IEEE Conference on Computer Vision and Pattern Recognition Hawaii, USA, July 21-26, 2017 p4905

    [17]

    Wu H K, Zheng S, Zhang J, Huang K Q 2018 IEEE Conference on Computer Vision and Pattern Recognition Salt Lake City, Utah, June 18-22, 2018

    [18]

    Ham B, Cho M, Ponce J 2018 IEEE Trans. Pattern Anal. Mach. Intell. 40 192

    [19]

    Thai B, Alnasrawi M, Deng G, Su Z 2017 IET Image Proc. 11 512

    [20]

    Farbman Z, Fattal R, Lischinski D, Szeliski R 2008 ACM Trans. Graph. 27 67

    [21]

    Xu L, Yan Q, Xia Y, Jia J Y 2012 ACM Trans. Graph. 31 139

    [22]

    Milanfar P 2013 IEEE Signal Process. Mag. 30 106

    [23]

    Xu L, Lu C, Xu Y, Jia J Y 2011 ACM Trans. Graph. 30 174

    [24]

    Porikli F 2008 IEEE Conference on Computer Vision and Pattern Recognition Anchorage, Alaska, USA, June 23-28, 2008 p3895

  • [1]

    Rahman Z U, Jobson D J 2004 J. Electron. Imaging 13 100

    [2]

    Seow M J, Asari V K 2006 Neurocomputing 69 954

    [3]

    Kimmel R, Elad M, Shaked D, Keshet R, Sobel L 2003 Int. J. Comput. Vision 52 7

    [4]

    Rong Z, Li Z, Li D N 2015 Optik 126 5665

    [5]

    Zeng L, Chen J, Tong L, Yan B, Ping X J 2013 Proceedings of the International Conference on Medical Imaging Physics and Engineering Shenyang, China, October 19-20, 2013 p269

    [6]

    Perona P, Malik J 1990 IEEE Trans. Pattern Anal. Mach. Intell. 12 629

    [7]

    Petschnigg G, Agrawala M, Hoppe H, Szeliski R, Cohen M, Toyama K 2004 ACM Trans. Graph. 23 664

    [8]

    Tomasi C, Manduchi R 1998 IEEE International Conference on Computer Vision Bombay, India January 4-7, 1998 p839

    [9]

    Aurich V, Weule J 1995 Proceedings of DAGM Symposium London, UK, September 13-15, 1995 p538

    [10]

    He K M, Sun J, Tang X O 2013 IEEE Trans. Pattern Anal. Mach. Intell. 35 1397

    [11]

    Gastal E S L, Oliveira M M 2011 ACM Trans. Graph. 30 69

    [12]

    Kou F, Chen W H, Wen C Y, Li Z G 2015 IEEE Trans. Image Process. 24 4528

    [13]

    Li Z G, Zheng J H, Zhu Z J, Yao W, Wu S Q 2014 IEEE Trans. Image Process. 24 120

    [14]

    Zhang Q, Shen X Y, Xu L, Jia J Y 2014 European Conference on Computer Vision Zurich, Switzerland, September 6-12, 2014 p815

    [15]

    Dai L Q, Yuan M K, Zhang F H, Zhang X P 2015 IEEE International Conference on Computer Vision Santiago, Chile, December 11-18, 2015 p352

    [16]

    Dai L Q, Yuan M K, Li Z C, Zhang X P, Tang J H 2017 IEEE Conference on Computer Vision and Pattern Recognition Hawaii, USA, July 21-26, 2017 p4905

    [17]

    Wu H K, Zheng S, Zhang J, Huang K Q 2018 IEEE Conference on Computer Vision and Pattern Recognition Salt Lake City, Utah, June 18-22, 2018

    [18]

    Ham B, Cho M, Ponce J 2018 IEEE Trans. Pattern Anal. Mach. Intell. 40 192

    [19]

    Thai B, Alnasrawi M, Deng G, Su Z 2017 IET Image Proc. 11 512

    [20]

    Farbman Z, Fattal R, Lischinski D, Szeliski R 2008 ACM Trans. Graph. 27 67

    [21]

    Xu L, Yan Q, Xia Y, Jia J Y 2012 ACM Trans. Graph. 31 139

    [22]

    Milanfar P 2013 IEEE Signal Process. Mag. 30 106

    [23]

    Xu L, Lu C, Xu Y, Jia J Y 2011 ACM Trans. Graph. 30 174

    [24]

    Porikli F 2008 IEEE Conference on Computer Vision and Pattern Recognition Anchorage, Alaska, USA, June 23-28, 2008 p3895

  • [1] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法. 物理学报, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [2] 王殿伟, 韩鹏飞, 范九伦, 刘颖, 许志杰, 王晶. 基于光照-反射成像模型和形态学操作的多谱段图像增强算法. 物理学报, 2018, 67(21): 210701. doi: 10.7498/aps.67.20181288
    [3] 刘琦, 王丽丹, 段书凯. 一种基于忆阻交叉阵列的自适应三高斯模型及其在图像增强中的应用. 物理学报, 2017, 66(12): 127301. doi: 10.7498/aps.66.127301
    [4] 王聪, 杨晶, 潘秀娟, 蔡高航, 赵巍, 张景园, 崔大复, 彭钦军, 许祖彦. 基于光参量放大相位共轭特性的图像修复与增强. 物理学报, 2017, 66(10): 104205. doi: 10.7498/aps.66.104205
    [5] 陈典兵, 朱明, 高文, 王慧利, 杨航. 基于残差矩阵估计的稀疏表示目标跟踪算法. 物理学报, 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [6] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演. 物理学报, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [7] 毕国玲, 续志军, 赵建, 孙强. 基于照射_反射模型和有界运算的多谱段图像增强. 物理学报, 2015, 64(10): 100701. doi: 10.7498/aps.64.100701
    [8] 苏勇, 范东明, 游为. 利用GOCE卫星数据确定全球重力场模型. 物理学报, 2014, 63(9): 099101. doi: 10.7498/aps.63.099101
    [9] 刘广东, 张开银. 二维电磁逆散射问题的时域高斯-牛顿反演算法. 物理学报, 2014, 63(3): 034102. doi: 10.7498/aps.63.034102
    [10] 王新迎, 韩敏, 王亚楠. 含噪混沌时间序列预测误差分析. 物理学报, 2013, 62(5): 050504. doi: 10.7498/aps.62.050504
    [11] 赵延来, 黄思训, 杜华栋. 基于变分方法的有限区域风场分解与重构I: 理论框架和仿真实验. 物理学报, 2013, 62(3): 039204. doi: 10.7498/aps.62.039204
    [12] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [13] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [14] 龙智勇, 石汉青, 黄思训. 利用卫星云图反演云导风的新思路. 物理学报, 2011, 60(5): 059202. doi: 10.7498/aps.60.059202
    [15] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [16] 赵延来, 黄思训, 杜华栋, 仲跻芹. 正则化方法同化多普勒天气雷达资料及对降雨预报的影响. 物理学报, 2011, 60(7): 079202. doi: 10.7498/aps.60.079202
    [17] 姜祝辉, 黄思训, 何然, 周晨腾. 合成孔径雷达资料反演海面风场的正则化方法研究. 物理学报, 2011, 60(6): 068401. doi: 10.7498/aps.60.068401
    [18] 刘广东, 张业荣. 二维有耗色散介质的时域逆散射方法. 物理学报, 2010, 59(10): 6969-6979. doi: 10.7498/aps.59.6969
    [19] 盛峥, 黄思训. 变分伴随正则化方法从雷达回波反演海洋波导(Ⅱ):实际反演试验. 物理学报, 2010, 59(6): 3912-3916. doi: 10.7498/aps.59.3912
    [20] 盛峥, 黄思训. 变分伴随正则化方法从雷达回波反演海洋波导(Ⅰ):理论推导部分. 物理学报, 2010, 59(3): 1734-1739. doi: 10.7498/aps.59.1734
计量
  • 文章访问数:  7478
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-25
  • 修回日期:  2018-10-11
  • 刊出日期:  2018-12-05

/

返回文章
返回