搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管/二硒化钼有机玻璃的非线性吸收、非线性散射和光限幅特性

孙悦 曲斌 全保刚

引用本文:
Citation:

碳纳米管/二硒化钼有机玻璃的非线性吸收、非线性散射和光限幅特性

孙悦, 曲斌, 全保刚

Nonlinear absorption, nonlinear scattering, and optical limiting properties of carbon nanotube/molybdenum diselenide organic glass

Sun Yue, Qu Bin, Quan Bao-Gang
PDF
导出引用
  • MoSe2的禁带宽度较窄(1.1–1.5 eV),且具有可调谐的激子光电效应,这样使其在光致发光、光电晶体管、太阳能电池和光学非线性等方面具有潜在的应用价值.然而,纯的MoSe2的光生电子空穴复合率较高,限制了其在某些光学领域中的应用.通过设计MoSe2的复合材料,可以降低材料的光生电子空穴复合率,从而扩展其应用领域.首先,通过热溶剂法合成CNT/MoSe2复合材料;然后,通过浇铸法将其分散在甲基丙烯酸甲酯(MMA)中制备成有机玻璃,其中MMA会聚合成聚甲基丙烯酸甲酯(PMMA),并利用改进的Z-扫描技术首次对CNT/MoSe2/PMMA有机玻璃的非线性吸收、非线性散射和光限幅特性进行了研究.研究表明,随着输入能量的变化,通过调节输入能量,CNT/MoSe2/PMMA有机玻璃表现出饱和吸收(SA)和从SA到反饱和吸收的转变.结合材料特性及应用条件要求,可以得到CNT/MoSe2/PMMA有机玻璃在光学设备,如光学限制器和锁模/调Q激光器等方向具有较好的应用前景.
    Because MoSe2 has broadband saturable absorption, and higher nonlinear refractive index. Compared with MoS2, thin-layered MoSe2 possesses very attractive properties, including narrow bandgap, low optical absorption coefficient, and large spin-splitting energy at the top of the valence band. The narrow bandgap and low optical absorption coefficient could make MoSe2 more applicable than MoS2. And the tunable excitation photoelectric effecthas great potential applications in the fields of photoluminescence, phototransistor, solar cells, nonlinear optics and other aspects. However, pure MoSe2 has high photogenerated recombination rate, thus limiting its applications in some optical fields. By designing nanocomposites of MoSe2, the photogenerated recombination rate of these materials can be reduced and their application field can be broadened. In this work, MoSe2 nanocomposites are prepared by simple methods. The two-dimensional layered MoSe2 nanosheets are combined with nanorods. By integrating the surface effect, small size effect and interfacial effect of CNT, the optical nonlinearity and optical limiting performance of MoSe2 composites are improved. The CNT/MoSe2 composite nanomaterials are first synthesized based on narrower band gap and lower light absorption coefficient of MoS2 than those of MoSe2 by growing MoSe2 nanoparticles on the surface of CNT through a solvothermal method, and then is dispersed in methyl methacrylate (MMA) to prepare an organic glass by a casting method, and the MMA is polymerized into poly (methyl methacrylate) (PMMA). The nonlinear absorption (NLA), nonlinear scattering (NLS) and optical limiting (OL) properties of the CNT/MoSe2/PMMA organic glass are studied by the modified Z-scan technique for the first time. The CNT/MoSe2/PMMA organic glass exhibits the saturable absorption (SA) and a changeover from SA to reverse saturable absorption by adjusting input energy. The experimental results show that the CNT/MoSe2/PMMA plexiglass exhibits better anti-saturation absorption and higher optical limiting properties than MoSe2/PMMA and CNT/PMMA plexiglass. Besides, the NLA and OL properties of the CNT/MoSe2/PMMA organic glass are enhanced compared with CNT/PMMA and MoSe2/PMMA organic glasses, which can be attributed to the existence of the C=C double bonds in CNTs, the layered structure of MoSe2 nanosheets, and the interfacial charge transfer between CNTs and MoSe2. And the results demonstrate that the CNT/MoSe2/PMMA organic glass is very promising for optical devices such as optical limiters and mode-locked/Q-switched lasers.
    [1]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [2]

    Dong N N, Li Y X, Feng Y Y, Zhang X F, Zhang X Y, Chang C X, Fan J T, Zhang L, Wang J 2015 Sci. Rep. 5 14646

    [3]

    Luo Z Q, Li Y Y, Zhong M, Huang Y Z, Wan X J, Peng J, Weng J 2015 Photon. Res. 3 A79

    [4]

    Hak K D, Lim D, Kore J 2015 Phys. Soc. 6 816

    [5]

    Weismann M, Panoiu N C 2016 Phys. Rew. B 94 035435

    [6]

    Wang W H, Wu Y L, Wu Q, Hua J J, Zhao J M 2016 Sci. Rep. 6 22072

    [7]

    Dawes A M C, Illing L, Clark S M, Gauthier D J 2005 Science 308 672

    [8]

    Han X F, Weng Y X, Wang R, Chen X H, Luo K H, Wu L A, Zhao J M 2008 Appl. Phys. Lett. 92 151109

    [9]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576

    [10]

    Wang K P, Feng Y Y, Chang C X, Zhan J X, Wang C W, Zhao Q Z, Coleman J N, Zhang L, Blau W J, Wang J 2014 Nanoscale 6 10530

    [11]

    Tai P T, Pan S D, Wang Y G, Tang J 2011 Opt. Commun. 284 1303

    [12]

    Jena K C, Bisht P B, Shaijumon M M, Ramaprabhu S 2007 Opt. Commun. 273 153

    [13]

    Wang J, Früchtl D, Blau W J 2010 Opt. Commun. 283 464

    [14]

    Qu B, Ouyang Q Y, Yu X B, Luo W H, Qi L H, Chen Y J 2015 Phys. Chem. Chem. Phys. 17 6036

    [15]

    Ouyang Q Y, Yu H L, Xu Z, Zhang Y, Li C Y, Qi L H, Chen Y J 2013 Appl. Phys. Lett. 102 031912

    [16]

    Kim K, Lee J U, Nam D, Cheong H 2016 ACS Nano 10 8113

    [17]

    Hopkins A R, Labatete-Goeppinger A C, Kim H, Katzman H A 2016 Carbon 107 77

    [18]

    Saha A, Jana M, Khanra P, Samanta P, Koo H, Murmu N C, Kuila T 2015 ACS Appl. Mater. Interfaces 7 14211

    [19]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Stryland E W V 1990 IEEE J. Quantum Electron. 26 760

    [20]

    Kurian P A, Vijayan C, Sathiyamoorthy K, SuchandSandeep C S, Philip R 2007 Nanoscale Res. Lett. 2 561

  • [1]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [2]

    Dong N N, Li Y X, Feng Y Y, Zhang X F, Zhang X Y, Chang C X, Fan J T, Zhang L, Wang J 2015 Sci. Rep. 5 14646

    [3]

    Luo Z Q, Li Y Y, Zhong M, Huang Y Z, Wan X J, Peng J, Weng J 2015 Photon. Res. 3 A79

    [4]

    Hak K D, Lim D, Kore J 2015 Phys. Soc. 6 816

    [5]

    Weismann M, Panoiu N C 2016 Phys. Rew. B 94 035435

    [6]

    Wang W H, Wu Y L, Wu Q, Hua J J, Zhao J M 2016 Sci. Rep. 6 22072

    [7]

    Dawes A M C, Illing L, Clark S M, Gauthier D J 2005 Science 308 672

    [8]

    Han X F, Weng Y X, Wang R, Chen X H, Luo K H, Wu L A, Zhao J M 2008 Appl. Phys. Lett. 92 151109

    [9]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576

    [10]

    Wang K P, Feng Y Y, Chang C X, Zhan J X, Wang C W, Zhao Q Z, Coleman J N, Zhang L, Blau W J, Wang J 2014 Nanoscale 6 10530

    [11]

    Tai P T, Pan S D, Wang Y G, Tang J 2011 Opt. Commun. 284 1303

    [12]

    Jena K C, Bisht P B, Shaijumon M M, Ramaprabhu S 2007 Opt. Commun. 273 153

    [13]

    Wang J, Früchtl D, Blau W J 2010 Opt. Commun. 283 464

    [14]

    Qu B, Ouyang Q Y, Yu X B, Luo W H, Qi L H, Chen Y J 2015 Phys. Chem. Chem. Phys. 17 6036

    [15]

    Ouyang Q Y, Yu H L, Xu Z, Zhang Y, Li C Y, Qi L H, Chen Y J 2013 Appl. Phys. Lett. 102 031912

    [16]

    Kim K, Lee J U, Nam D, Cheong H 2016 ACS Nano 10 8113

    [17]

    Hopkins A R, Labatete-Goeppinger A C, Kim H, Katzman H A 2016 Carbon 107 77

    [18]

    Saha A, Jana M, Khanra P, Samanta P, Koo H, Murmu N C, Kuila T 2015 ACS Appl. Mater. Interfaces 7 14211

    [19]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Stryland E W V 1990 IEEE J. Quantum Electron. 26 760

    [20]

    Kurian P A, Vijayan C, Sathiyamoorthy K, SuchandSandeep C S, Philip R 2007 Nanoscale Res. Lett. 2 561

  • [1] 吴诗漫, 陶思敏, 吉爱闯, 管绍杭, 肖剑荣. 硒化温度对MoSe2薄膜结构和光学带隙的影响. 物理学报, 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] 黄多辉, 万明杰, 杨俊升. 聚甲基丙烯酸甲酯与碳纳米管纳米复合材料玻璃化转变及其非线性力学行为的分子动力学模拟. 物理学报, 2021, 70(21): 218101. doi: 10.7498/aps.70.20210752
    [3] 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究. 物理学报, 2019, 68(10): 100502. doi: 10.7498/aps.68.20182068
    [4] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [5] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻. 物理学报, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [6] 王必本, 朱恪, 王强. Se和MoSe2纳米片的结构和发光性能. 物理学报, 2016, 65(3): 038102. doi: 10.7498/aps.65.038102
    [7] 王飞风, 张沛红, 高铭泽. 纳米碳化硅/硅橡胶复合物非线性电导特性研究. 物理学报, 2014, 63(21): 217803. doi: 10.7498/aps.63.217803
    [8] 甘平, 辜敏, 卿胜兰, 鲜晓东. Te/TeO2-SiO2复合薄膜的吸收和非线性光学特性研究. 物理学报, 2013, 62(7): 078101. doi: 10.7498/aps.62.078101
    [9] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究. 物理学报, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [10] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. Au:TiO2和Au:Al2O3纳米颗粒复合膜的线性和非线性光学特性. 物理学报, 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085
    [11] 朱宝华, 王芳芳, 张 琨, 马国宏, 郭立俊, 钱士雄. Ag:Bi2O3复合膜的线性和非线性光学性质. 物理学报, 2007, 56(7): 4024-4031. doi: 10.7498/aps.56.4024
    [12] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [13] 易文辉, 徐友龙, 封 伟, 吴洪才, 高 潮. 可溶性聚噻吩甲烯包覆碳纳米管的三阶非线性光学响应. 物理学报, 2006, 55(7): 3736-3742. doi: 10.7498/aps.55.3736
    [14] 封 伟, 易文辉, 冯奕钰, 吴子刚, 张振中. 聚苯胺/碳纳米管复合体的制备及其三阶非线性光学性能研究. 物理学报, 2006, 55(7): 3772-3777. doi: 10.7498/aps.55.3772
    [15] 王 刚, 端木云, 崔一平, 张 宇, 刘 宓. 聚集效应对银纳米粒子的二阶非线性光学特性的影响研究. 物理学报, 2005, 54(1): 144-148. doi: 10.7498/aps.54.144
    [16] 刘发民, 王天民, 张立德. 纳米GaSb-SiO2复合薄膜的非线性光学特性. 物理学报, 2002, 51(1): 183-186. doi: 10.7498/aps.51.183
    [17] 曲士良, 宋瑛林, 杜池敏, 王玉晓, 高亚臣, 刘树田, 李玉良, 朱道本. 基于富勒烯C60结构体系的金纳米粒子合成物光学非线性研究. 物理学报, 2001, 50(9): 1703-1708. doi: 10.7498/aps.50.1703
    [18] 余保龙, 顾玉宗, 毛艳丽, 郭立峻, 符瑞生, 朱从善, 干福熹. 半导体PbS纳米微粒的三阶非线性光学特性. 物理学报, 2000, 49(2): 324-327. doi: 10.7498/aps.49.324
    [19] 余保龙, 卜宏建, 吴晓春, 张桂兰, 汤国庆, 陈文驹, 朱从善, 干福熹. In2O3纳米微粒非线性光学特性. 物理学报, 1999, 48(2): 320-325. doi: 10.7498/aps.48.320
    [20] 余保龙, 张桂兰, 汤国庆, 吴晓春, 陈文驹, 杨斌洲. Fe2O3纳米微粒溶胶非线性光学特性的Z-扫描研究. 物理学报, 1997, 46(3): 579-586. doi: 10.7498/aps.46.579
计量
  • 文章访问数:  6209
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-23
  • 修回日期:  2018-09-29
  • 刊出日期:  2018-12-05

/

返回文章
返回