搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr二维单层薄片中Jahn-Teller效应的第一性原理研究

张薇 陈凯彬 陈震东

引用本文:
Citation:

Cr二维单层薄片中Jahn-Teller效应的第一性原理研究

张薇, 陈凯彬, 陈震东

First-principles study on Jahn-Teller effect in Cr monolayer film

Zhang Wei, Chen Kai-Bin, Chen Zhen-Dong
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算,本文对Cr单层薄片的一系列二维结构(长方、正方、六角、斜方和中心长方晶格)进行了结构稳定性和电子性质研究.结果表明,在Cr的二维体系中,对称性较低的斜方晶格和中心长方晶格是稳定的,对称性较高的正方和六角晶格是不稳定的,而长方晶格的形成能很小.Cr二维原子薄片的两种稳定结构都是六角结构畸变的结果,六角晶格的键角减小时会形变成斜方晶格,键角增大时会形变成中心长方晶格,这是由于Jahn-Teller效应使简并能级自发破缺,继而结构产生降低对称性的形变,最终使得体系变得稳定.
    Computational physics has been used in many scientific research fields, in which first-principles calculation based on density functional theory has made brilliant achievements. Unlike three-dimensional materials, low-dimensional materials present fantastic physical effect, due to the reduction of material dimensions. With the rapid development of two-dimensional materials, people have a more in-depth understanding of them. Requirements for high performance of two-dimensional materials are raised for potential applications, so the exploration of some effects affecting the stability of two-dimensional materials becomes more and more important. Based on the pioneers' work, Jahn-Teller effect is found to have a certain influence on the stabilities of two-dimensional structure of some elements. In the present paper, we explain the stable structure of Cr monolayer film through theoretical calculation, providing a guidance for experimental synthesis. Using first-principles calculation, we study a series of two-dimensional structures (rectangular, square, hexagonal, oblique and centered rectangular) of Cr monolayer film, focusing on the structural stability and electronic properties. Firstly, the equilibrium lattice constant and cohesive energy of each structure are calculated. Then, the bond angle and lattice constant dependence of the total energy are analyzed in detail. Finally, we investigate the energy band structures, total electronic densities of states, charge densities and electron occupation numbers of orbitals. The results show that low-symmetry oblique and centered rectangular lattice are stable in the two-dimensional system of Cr, while high-symmetry square and hexagonal lattices are not stable and the adhesive energy of the rectangular lattices is very small. Two stable structures of Cr monolayer sheet are formed due to hexagonal structure distortion. The hexagonal structure can shape into a centered rectangular structure with the increase of bond angle, while it changes into an oblique structure with the decrease of bond angle. Because of Jahn-Teller effect, the degenerate energy level spontaneously splits. Then the structure deforms into two reduced-symmetry structures, resulting in a stable system. Therefore, we can infer that the Jahn-Teller effect plays a crucial role in the structural stability of monolayer sheet.
    • 基金项目: 国家自然科学基金(批准号:11504051)和福建省杰出青年科学基金(批准号:2018J06001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504051) and the Science Fund for Distinguished Young Scholars of Fujian Province, China (Grant No. 2018J06001).
    [1]

    Chhowalla M, Shin H S, Eda G, Li L, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Li S S, Wang S F, Tang D M, Zhao W J, Xu H L, Chu L Q, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60

    [4]

    Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z 2018 Nature 556 355

    [5]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 76802

    [6]

    Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H, Zhang S C 2013 Phys. Rev. Lett. 111 136804

    [7]

    Ezawa M 2012 Phys. Rev. Lett. 109 55502

    [8]

    Liu N, Jin S F, Guo L W, Wang G, Shao H Z, Chen L, Chen X L 2017 Phys. Rev. B 95 155311

    [9]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [10]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [11]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [12]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [13]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [14]

    Monkhors H J, Pack J D 1976 Phys. Rev. B 13 5188

    [15]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [16]

    TonKov E T, Ponyatovsky E G 2005 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press) pp242-244

    [17]

    Olle M, Ceballos G, Serrate D, Gambardella P 2012 Nano Lett. 12 4431

    [18]

    Robertson A W, Warner J H 2011 Nano Lett. 11 1182

  • [1]

    Chhowalla M, Shin H S, Eda G, Li L, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Li S S, Wang S F, Tang D M, Zhao W J, Xu H L, Chu L Q, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60

    [4]

    Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z 2018 Nature 556 355

    [5]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 76802

    [6]

    Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H, Zhang S C 2013 Phys. Rev. Lett. 111 136804

    [7]

    Ezawa M 2012 Phys. Rev. Lett. 109 55502

    [8]

    Liu N, Jin S F, Guo L W, Wang G, Shao H Z, Chen L, Chen X L 2017 Phys. Rev. B 95 155311

    [9]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [10]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [11]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [12]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [13]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [14]

    Monkhors H J, Pack J D 1976 Phys. Rev. B 13 5188

    [15]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [16]

    TonKov E T, Ponyatovsky E G 2005 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press) pp242-244

    [17]

    Olle M, Ceballos G, Serrate D, Gambardella P 2012 Nano Lett. 12 4431

    [18]

    Robertson A W, Warner J H 2011 Nano Lett. 11 1182

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率. 物理学报, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] 余跃, 杨恒玉, 周五星, 欧阳滔, 谢国锋. 第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能. 物理学报, 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [5] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [6] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [8] 李恬静, 操秀霞, 唐士惠, 何林, 孟川民. 蓝宝石冲击消光晶向效应的第一性原理. 物理学报, 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [9] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算. 物理学报, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [10] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [11] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [12] 杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序. 物理学报, 2017, 66(6): 063102. doi: 10.7498/aps.66.063102
    [13] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [15] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [16] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [17] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [18] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [19] 陈鲁倬, 王晓春, 文玉华, 朱梓忠. Nb二维原子薄片中的Jahn-Teller效应. 物理学报, 2007, 56(5): 2920-2925. doi: 10.7498/aps.56.2920
    [20] 邱庆春. T1u×hg Jahn-Teller系统:D3d势阱中的频率分解与能级分裂. 物理学报, 2004, 53(7): 2292-2298. doi: 10.7498/aps.53.2292
计量
  • 文章访问数:  6564
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-07
  • 修回日期:  2018-10-01
  • 刊出日期:  2018-12-05

/

返回文章
返回