搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂氧化物中电子相分离的量子调控

王文彬 朱银燕 殷立峰 沈健

引用本文:
Citation:

复杂氧化物中电子相分离的量子调控

王文彬, 朱银燕, 殷立峰, 沈健

Quantum manipulation of electronic phase separation in complex oxides

Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian
PDF
导出引用
  • 复杂氧化物可以呈现出高温超导、庞磁阻以及多铁效应等诸多新奇的物理现象.这类材料中的电荷/自旋/轨道和晶格自由度之间的强耦合相互作用,可以导致多种相互竞争且能量非常接近的电子态的空间共存,这就是电子相分离现象.如果可以将材料的空间尺寸缩小到电子相分离的特征长度,其物理性质甚至电子关联作用本身都会发生根本的变化,从而有可能实现复杂氧化物中的量子调控.本文综述了我们课题组在过去几年中针对复杂氧化物中电子相分离的量子调控取得的进展,内容包括:发现了锰氧化物边缘电子态,通过氧化物微纳加工技术,实现了量子态空间分布的调控,提高了庞磁阻锰氧化物的临界温度;研究了当材料空间尺度小于其电子相分离特征尺度时电子相分离的表现,确定了在电子相分离消失以后体系的磁结构;通过超晶格生长技术调控了材料中的掺杂有序度,对锰氧化物中大尺度的电子相分离的物理机理从实验上给出了解释.
    Complex oxides system displays exotic properties such as high temperature superconductivity, colossal magnetoresistance and multiferroics. Owing to the strong correlation between lattice, spin, charge and orbital degrees of freedom, competing electronic states in complex oxides system often have close energy scales leading to rich phase diagrams and spatial coexistence of different electronic phases known as electronic phase separation (EPS). When the dimension of complex oxides system is reduced to the length scale of the correlation length of the EPS, one would expect fundamental changes of the correlated behavior. This offers a way to control the physical properties in the EPS system. In this paper, we review our recent works on electronic phase separation in complex oxide systems. We discovered a pronounced ferromagnetic edge state in manganite strips; by using lithographic techniques, we also fabricated antidot arrays in manganite, which show strongly enhanced metal-insulator transition temperature and reduced resistance. Moreover, we discovered a spatial confinement-induced transition from an EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases to a single ferromagnetic metallic state in manganite. In addition, by using unit cell by unit cell superlattice growth technique, we determined the role of chemical ordering of the dopant in manganite. We show that spatial distribution of the chemical dopants has strong influence on their EPS and physical properties. These works open a new way to manipulate EPS and thus the global physical properties of the complex oxides systems, which is potentially useful for oxides electronic and spintronic device applications.
      通信作者: 沈健, shenj5494@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0300702)、国家重点基础研究发展计划(批准号:2014CB921104)、国家自然科学基金(批准号:11504053)、上海市学术带头人项目(批准号:18XD1400600,17XD1400400)和上海市科委基础研究项目(批准号:18JC1411400,18ZR1403200)资助的课题.
      Corresponding author: Shen Jian, shenj5494@fudan.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300702), the National Basic Research Program of China (Grant No. 2014CB921104), the National Natural Science Foundation of China (Grant No. 11504053), the Program of Shanghai Academic Research Leader, China (Grant Nos. 18XD1400600, 17XD1400400), and Shanghai Municipal Natural Science Foundation, China (Grant Nos. 18JC1411400, 18ZR1403200).
    [1]

    Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R, Shen Z X 2008 Nature 455 81

    [2]

    Dai P C, Hu J P, Dagotto E 2012 Nat. Phys. 8 709

    [3]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [4]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [5]

    Dagotto E, Hotta T, Moreo A 2001 Physics Reports 344 1

    [6]

    Tokura Y 2006 Rep. Prog. Phys. 69 797

    [7]

    Moreo A, Yunoki S, Dagotto E 1999 Science 283 2034

    [8]

    E D 2003 Springer, Heidelberg pp 313

    [9]

    Liang L Z, Li L, Wu H, Zhu X H 2014 Nanoscale Research Letters 9 1

    [10]

    Dulli H, Dowben P A, Liou S H, Plummer E W 2000 Phys. Rev. B 62 14629

    [11]

    Nascimento V B, Freeland J W, Saniz R, Moore R G, Mazur D, Liu H, Pan M H, RunÅgren J, Gray K E, Rosenberg R A, Zheng H, Mitchell J F, Freeman A J, Veltruska K, Plummer E W 2009 Phys. Rev. Lett. 103 227201

    [12]

    Freeland J W, Gray K E, Ozyuzer L, Berghuis P, Badica E, Kavich J, Zheng H, Mitchell J F 2005 Nat. Mater. 4 62

    [13]

    Podzorov V, Kim B G, Kiryukhin V, Gershenson M E, Cheong S W 2001 Phys. Rev. B 64 140406

    [14]

    Bingham N S, Lampen P, Phan M H, Hoang T D, Chinh H D, Zhang C L, Cheong S W, Srikanth H 2012 Phys. Rev. B 86 064420

    [15]

    Uehara M, Mori S, Chen C H, Cheong S W 1999 Nature 399 560

    [16]

    Du K, Zhang K, Dong S, Wei W G, Shao J, Niu J B, Chen J J, Zhu Y Y, Lin H X, Yin X L, Liou S H, Yin L F, Shen J 2015 Nat. Commun. 6 6179

    [17]

    Zhang L W, Israel C, Biswas A, Greene R L, de Lozanne A 2002 Science 298 805

    [18]

    Soh Y A, Aeppli G, Mathur N D, Blamire M G 2000 Phys. Rev.B 63 020402

    [19]

    Soh Y A, Evans P G, Cai Z, Lai B, Kim C Y, Aeppli G, Mathur N D, Blamire M G, Isaacs E D 2002 J. Appl. Phys. 91 7742

    [20]

    Gillaspie D, Ma J X, Zhai H Y, Ward T Z, Christen H M, Plummer E W, Shen J 2006 J. Appl. Phys. 99 08S901

    [21]

    Wollan E O, Koehler W C 1955 Phys. Rev. 100 545

    [22]

    Taran S, Chaudhuri B K, Das A, Nigam A K, Kremer R K, Chatterjee S 2007 Journal of Physics-Condensed Matter 19 216217

    [23]

    Ma J X, Gillaspie D T, Plummer E W, Shen J 2005 Phys. Rev. Lett. 95 237210

    [24]

    Martin J I, Nogues J, Liu K, Vicent J L, Schuller I K 2003 Journal of Magnetism and Magnetic Materials 256 449

    [25]

    Li H, Li L, Liang H X, Cheng L, Zhai X F, Zeng C G 2014 Appl. Phys. Lett. 104 082414

    [26]

    Kovylina M, Erekhinsky M, Morales R, Villegas J E, Schuller I K, Labarta A, Batlle X 2009 Appl. Phys. Lett. 95 152507

    [27]

    Frankovsky R, Luetkens H, Tambornino F, Marchuk A, Pascua G, Amato A, Klauss H H, Johrendt D 2013 Phys. Rev. B 87 174515

    [28]

    Salamon M B, Jaime M 2001 Reviews of Modern Physics 73 583

    [29]

    Zhang K, Du K, Liu H, Zhang X G, Lan F L, Lin H X, Wei W G, Zhu Y Y, Kou Y F, Shao J, Niu J B, Wang W B, Wu R Q, Yin L F, Plummer E W, Shen J 2015 Proceedings of the National Academy of Sciences of the United States of America 112 9558

    [30]

    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y 1995 Phys. Rev. B 51 14103

    [31]

    Mahendiran R, Maignan A, Hebert S, Martin C, Hervieu M, Raveau B, Mitchell J F, Schiffer P 2002 Phys. Rev. Lett. 89 286602

    [32]

    Burgy J, Moreo A, Dagotto E 2004 Phys. Rev. Lett. 92 097202

    [33]

    Ahn K H, Lookman T, Bishop A R 2004 Nature 428 401

    [34]

    Schmalian J, Wolynes P G 2000 Phys. Rev. Lett. 85 836

    [35]

    Demko L, Kezsmarki I, Mihaly G, Takeshita N, Tomioka Y, Tokura Y 2008 Phys. Rev. Lett. 101 037206

    [36]

    Ghivelder L, Parisi F 2005 Phys. Rev. B 71 184425

    [37]

    Shao J, Liu H, Zhang K, Yu Y, Yu W C, Lin H X, Niu J B, Du K, Kou Y F, Wei W G, Lan F L, Zhu Y Y, Wang W B, Xiao J, Yin L F, Plummer E W, Shen J 2016 Proceedings of the National Academy of Sciences of the United States of America 113 9228

    [38]

    Ward T Z, Gai Z, Guo H W, Yin L F, Shen J 2011 Phys. Rev. B 83 125125

    [39]

    Fath M, Freisem S, Menovsky A A, Tomioka Y, Aarts J, Mydosh J A 1999 Science 285 1540

    [40]

    Moshnyaga V, Sudheendra L, Lebedev O I, Koster S A, Gehrke K, Shapoval O, Belenchuk A, Damaschke B, van Tendeloo G, Samwer K 2006 Phys. Rev. Lett. 97 107205

    [41]

    RodriguezMartinez L M, Attfield J P 1996 Phys. Rev. B 54 15622

    [42]

    Moreo A, Mayr M, Feiguin A, Yunoki S, Dagotto E 2000 Phys. Rev. Lett. 84 5568

    [43]

    Gibert M, Zubko P, Scherwitzl R, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195

    [44]

    Rogdakis K, Viskadourakis Z, Petrovic A P, Choi E, Lee J, Panagopoulos C 2015 Appl. Phys. Lett. 106 023120

    [45]

    May S J, Ryan P J, Robertson J L, Kim J W, Santos T S, Karapetrova E, Zarestky J L, Zhai X, te Velthuis S G E, Eckstein J N, Bader S D, Bhattacharya A 2009 Nat. Mater. 8 892

    [46]

    Zhu Y Y, Du K, Niu J B, Lin L F, Wei W G, Liu H, Lin H X, Zhang K, Yang T Y, Kou Y F, Shao J, Gao X Y, Xu X S, Wu X S, Dong S, Yin L F, Shen J 2016 Nat. Commun. 7 11260

    [47]

    Zhai H Y, Ma J X, Gillaspie D T, Zhang X G, Ward T Z, Plummer E W, Shen J 2006 Phys. Rev. Lett. 97 167201

    [48]

    Ward T Z, Liang S, Fuchigami K, Yin L F, Dagotto E, Plummer E W, Shen J 2008 Phys. Rev. Lett. 100 247204

    [49]

    Bouzerar G, Cepas O 2007 Phys. Rev. B 76 020401

    [50]

    Dong S, Yu R, Yunoki S, Alvarez G, Liu J M, Dagotto E 2008 Phys. Rev. B 78 201102

  • [1]

    Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R, Shen Z X 2008 Nature 455 81

    [2]

    Dai P C, Hu J P, Dagotto E 2012 Nat. Phys. 8 709

    [3]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [4]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [5]

    Dagotto E, Hotta T, Moreo A 2001 Physics Reports 344 1

    [6]

    Tokura Y 2006 Rep. Prog. Phys. 69 797

    [7]

    Moreo A, Yunoki S, Dagotto E 1999 Science 283 2034

    [8]

    E D 2003 Springer, Heidelberg pp 313

    [9]

    Liang L Z, Li L, Wu H, Zhu X H 2014 Nanoscale Research Letters 9 1

    [10]

    Dulli H, Dowben P A, Liou S H, Plummer E W 2000 Phys. Rev. B 62 14629

    [11]

    Nascimento V B, Freeland J W, Saniz R, Moore R G, Mazur D, Liu H, Pan M H, RunÅgren J, Gray K E, Rosenberg R A, Zheng H, Mitchell J F, Freeman A J, Veltruska K, Plummer E W 2009 Phys. Rev. Lett. 103 227201

    [12]

    Freeland J W, Gray K E, Ozyuzer L, Berghuis P, Badica E, Kavich J, Zheng H, Mitchell J F 2005 Nat. Mater. 4 62

    [13]

    Podzorov V, Kim B G, Kiryukhin V, Gershenson M E, Cheong S W 2001 Phys. Rev. B 64 140406

    [14]

    Bingham N S, Lampen P, Phan M H, Hoang T D, Chinh H D, Zhang C L, Cheong S W, Srikanth H 2012 Phys. Rev. B 86 064420

    [15]

    Uehara M, Mori S, Chen C H, Cheong S W 1999 Nature 399 560

    [16]

    Du K, Zhang K, Dong S, Wei W G, Shao J, Niu J B, Chen J J, Zhu Y Y, Lin H X, Yin X L, Liou S H, Yin L F, Shen J 2015 Nat. Commun. 6 6179

    [17]

    Zhang L W, Israel C, Biswas A, Greene R L, de Lozanne A 2002 Science 298 805

    [18]

    Soh Y A, Aeppli G, Mathur N D, Blamire M G 2000 Phys. Rev.B 63 020402

    [19]

    Soh Y A, Evans P G, Cai Z, Lai B, Kim C Y, Aeppli G, Mathur N D, Blamire M G, Isaacs E D 2002 J. Appl. Phys. 91 7742

    [20]

    Gillaspie D, Ma J X, Zhai H Y, Ward T Z, Christen H M, Plummer E W, Shen J 2006 J. Appl. Phys. 99 08S901

    [21]

    Wollan E O, Koehler W C 1955 Phys. Rev. 100 545

    [22]

    Taran S, Chaudhuri B K, Das A, Nigam A K, Kremer R K, Chatterjee S 2007 Journal of Physics-Condensed Matter 19 216217

    [23]

    Ma J X, Gillaspie D T, Plummer E W, Shen J 2005 Phys. Rev. Lett. 95 237210

    [24]

    Martin J I, Nogues J, Liu K, Vicent J L, Schuller I K 2003 Journal of Magnetism and Magnetic Materials 256 449

    [25]

    Li H, Li L, Liang H X, Cheng L, Zhai X F, Zeng C G 2014 Appl. Phys. Lett. 104 082414

    [26]

    Kovylina M, Erekhinsky M, Morales R, Villegas J E, Schuller I K, Labarta A, Batlle X 2009 Appl. Phys. Lett. 95 152507

    [27]

    Frankovsky R, Luetkens H, Tambornino F, Marchuk A, Pascua G, Amato A, Klauss H H, Johrendt D 2013 Phys. Rev. B 87 174515

    [28]

    Salamon M B, Jaime M 2001 Reviews of Modern Physics 73 583

    [29]

    Zhang K, Du K, Liu H, Zhang X G, Lan F L, Lin H X, Wei W G, Zhu Y Y, Kou Y F, Shao J, Niu J B, Wang W B, Wu R Q, Yin L F, Plummer E W, Shen J 2015 Proceedings of the National Academy of Sciences of the United States of America 112 9558

    [30]

    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y 1995 Phys. Rev. B 51 14103

    [31]

    Mahendiran R, Maignan A, Hebert S, Martin C, Hervieu M, Raveau B, Mitchell J F, Schiffer P 2002 Phys. Rev. Lett. 89 286602

    [32]

    Burgy J, Moreo A, Dagotto E 2004 Phys. Rev. Lett. 92 097202

    [33]

    Ahn K H, Lookman T, Bishop A R 2004 Nature 428 401

    [34]

    Schmalian J, Wolynes P G 2000 Phys. Rev. Lett. 85 836

    [35]

    Demko L, Kezsmarki I, Mihaly G, Takeshita N, Tomioka Y, Tokura Y 2008 Phys. Rev. Lett. 101 037206

    [36]

    Ghivelder L, Parisi F 2005 Phys. Rev. B 71 184425

    [37]

    Shao J, Liu H, Zhang K, Yu Y, Yu W C, Lin H X, Niu J B, Du K, Kou Y F, Wei W G, Lan F L, Zhu Y Y, Wang W B, Xiao J, Yin L F, Plummer E W, Shen J 2016 Proceedings of the National Academy of Sciences of the United States of America 113 9228

    [38]

    Ward T Z, Gai Z, Guo H W, Yin L F, Shen J 2011 Phys. Rev. B 83 125125

    [39]

    Fath M, Freisem S, Menovsky A A, Tomioka Y, Aarts J, Mydosh J A 1999 Science 285 1540

    [40]

    Moshnyaga V, Sudheendra L, Lebedev O I, Koster S A, Gehrke K, Shapoval O, Belenchuk A, Damaschke B, van Tendeloo G, Samwer K 2006 Phys. Rev. Lett. 97 107205

    [41]

    RodriguezMartinez L M, Attfield J P 1996 Phys. Rev. B 54 15622

    [42]

    Moreo A, Mayr M, Feiguin A, Yunoki S, Dagotto E 2000 Phys. Rev. Lett. 84 5568

    [43]

    Gibert M, Zubko P, Scherwitzl R, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195

    [44]

    Rogdakis K, Viskadourakis Z, Petrovic A P, Choi E, Lee J, Panagopoulos C 2015 Appl. Phys. Lett. 106 023120

    [45]

    May S J, Ryan P J, Robertson J L, Kim J W, Santos T S, Karapetrova E, Zarestky J L, Zhai X, te Velthuis S G E, Eckstein J N, Bader S D, Bhattacharya A 2009 Nat. Mater. 8 892

    [46]

    Zhu Y Y, Du K, Niu J B, Lin L F, Wei W G, Liu H, Lin H X, Zhang K, Yang T Y, Kou Y F, Shao J, Gao X Y, Xu X S, Wu X S, Dong S, Yin L F, Shen J 2016 Nat. Commun. 7 11260

    [47]

    Zhai H Y, Ma J X, Gillaspie D T, Zhang X G, Ward T Z, Plummer E W, Shen J 2006 Phys. Rev. Lett. 97 167201

    [48]

    Ward T Z, Liang S, Fuchigami K, Yin L F, Dagotto E, Plummer E W, Shen J 2008 Phys. Rev. Lett. 100 247204

    [49]

    Bouzerar G, Cepas O 2007 Phys. Rev. B 76 020401

    [50]

    Dong S, Yu R, Yunoki S, Alvarez G, Liu J M, Dagotto E 2008 Phys. Rev. B 78 201102

  • [1] 李心泽, 唐桂华, 汪子涵, 冯建朝, 张晓峰. 星载电子器件温控的系统多尺度分析. 物理学报, 2024, 73(18): 184401. doi: 10.7498/aps.73.20240685
    [2] 周轩弛, 李海帆. 强关联电子相变氧化物材料及多场调控. 物理学报, 2024, 73(11): 117102. doi: 10.7498/aps.73.20240289
    [3] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [4] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [5] 李婧, 丁帅帅, 胡文平. 有机自旋电子器件中的自旋界面研究进展. 物理学报, 2022, 71(6): 067201. doi: 10.7498/aps.71.20211786
    [6] 何鑫, 李鑫焱, 李景辉, 张振华. Fe原子吸附的锑烯/WS2异质结的磁电子性质及调控效应. 物理学报, 2022, 71(21): 218503. doi: 10.7498/aps.71.20220949
    [7] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理. 物理学报, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [8] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究. 物理学报, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [9] 刘虎林, 王兴, 田进寿, 赛小锋, 韦永林, 温文龙, 王俊锋, 徐向晏, 王超, 卢裕, 何凯, 陈萍, 辛丽伟. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究. 物理学报, 2018, 67(1): 014209. doi: 10.7498/aps.67.20171729
    [10] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [11] 张斯淇, 陆景彬, 刘晓静, 刘继平, 李宏, 梁禺, 张晓茹, 刘晗, 吴向尧, 郭义庆. 运用理想光子禁带模型实现对激发态原子系统演化的调控. 物理学报, 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [12] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [13] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [14] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究. 物理学报, 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [15] 陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚. 电子器件散粒噪声测试方法研究. 物理学报, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [16] 黄仙山, 刘海莲. 运用动态腔环境实现对原子自发辐射过程的调控. 物理学报, 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [17] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控. 物理学报, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [18] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算. 物理学报, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [19] 冯朝文, 蔡 理, 康 强. 基于单电子器件的混沌电路研究. 物理学报, 2008, 57(10): 6155-6161. doi: 10.7498/aps.57.6155
    [20] 张恩虬. 关于热电子发射理论的评述(Ⅰ)——对氧化物阴极的半导体模型的批判. 物理学报, 1974, 23(5): 43-52. doi: 10.7498/aps.23.43
计量
  • 文章访问数:  7409
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2018-11-19
  • 刊出日期:  2019-11-20

/

返回文章
返回